Article

Visible-Light Photoredox Catalytic α-Cyanation Reactions of Tertiary Amines

  • Zhou Quanquan ,
  • Liu Dan ,
  • Xiao Wenjing ,
  • Lu Liangqiu
Expand
  • Key Laboratory of Pesticide & Chemical Biology Ministry of Education and College of Chemistry, Central China Normal University, Wuhan 430079

Received date: 2016-08-15

  Revised date: 2016-10-07

  Online published: 2016-10-10

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21232003, 21472057 and 21572074).

Abstract

Visible-light photoredox catalysis, a novel and green catalytic strategy, has recently received increasing attention from chemists and been widely applied to organic synthesis in the past years. This catalytic strategy enables the generation of various reactive species under mild conditions without stoichiometric activation reagents and shows its significance for sustainable chemistry. α-Amino nitriles are highly versatile intermediates having extensive applications in organic synthesis and biological transformation. The oxidation of tertiary amines using stoichiometric oxidants followed by the nucleophilic addition reaction of the iminium intermediate by cyanide ion (CN-) represents a direct approach for their synthesis. However, the use of stoichiometric oxidants and the production of huge amounts of hazardous waste (i.e., CN-) is undesirable from environmental viewpoints. Here, we report a photoredox catalytic α-cyanation reaction of tertiary amines using cyanobenziodoxol as a stable and safe cyanide source. This protocol is favored for mild conditions, the avoidance of extra oxidant and highly toxic cyano anion, good functional tolerance as well as safe and simple operations. By doing so, a variety of α-amino nitriles are afforded in good to excellent yields. A sunlight-driven reaction and a gram-scale reaction further demonstrate the utility of this methodology. In addition, we also succeed to apply the same strategy to the decarboxylative cyanation of carboxylic acids, affording the nitriles in moderate yields. A possible mechanism was proposed on the basis of known literature and our previous reports. The representative procedure for the α-cyanation reaction of tertiary amines is as following:N-phenyl piperidine 1a (0.48 mmol), cyanobenziodoxol 2a (0.40 mmol), photocatalyst Ir[dF(CF3)PPy]2(dtbbpy)PF6 (0.008 mmol) and CsHCO3 (0.60 mmol) were dissolved in DCM (8 mL). Then, the resulting mixture was degassed via 'freeze-pump-thaw' procedure (3 times). After that, the solution was stirred at a distance of ca. 5 cm from a 7 W blue LEDs (450~460 nm) at room temperature for 16 h. Upon completion, the crude product was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate 30:1~10:1) directly to give the desired product. The procedure for the decarboxylative cyanation of carboxylic acids is similar.

Cite this article

Zhou Quanquan , Liu Dan , Xiao Wenjing , Lu Liangqiu . Visible-Light Photoredox Catalytic α-Cyanation Reactions of Tertiary Amines[J]. Acta Chimica Sinica, 2017 , 75(1) : 110 -114 . DOI: 10.6023/A16080414

References

[1] (a) Enders, D.; Shilvock, J. P. Chem. Soc. Rev. 2000, 29, 359;
(b) Martinez, E. J.; Corey, E. J. Org. Lett. 1999, 1, 75;
(c) Dyker, G. Angew. Chem., Int. Ed. 1997, 36, 1700;
(d) North, M. Angew. Chem. Int. Ed. 2004, 43, 4126;
(e) En, D.; Zou, G.-F.; Guo, Y.; Liao, W.-W. J. Org. Chem. 2014, 79, 4456;
(f) Qin, T.-Y.; Zhang, X.-A.; Liao, W.-W. Chin. J. Org. Chem. 2014, 34, 2187. (秦天游, 张晓安, 寮渭巍, 有机化学, 2014, 34, 2187).
[2] (a) Ishitani, H.; Komiyama, S.; Kobayashi, S. Angew. Chem., Int. Ed. 1998, 3186;
(b) Surendra, K.; Krishnaveni, N. S.; Mahesh, A.; Rao, K. R. J. Org. Chem. 2006, 2532;
(c) Wang, J.; Liu, X.; Feng, X. Chem. Rev. 2011, 111, 6947.
[3] Selected examples, see:(a) Han, W.; Ofial, A. R. Chem. Commun. 2009, 33, 5024;
(b) Boess, E.; Schmitz, C.; Klussmann, M. J. Am. Chem. Soc. 2012, 134, 5317;
(c) Murahashi, S.; Komiya, N.; Terai, H.; Nakae, T. J. Am. Chem. Soc. 2003, 125, 15312;
(d) Zhang, Y.; Peng, H.; Zhang, M.; Cheng, Y.; Zhu, C. Chem. Commun. 2011, 2354;
(e) Alagiri, K.; Prabhu, K. R. Org. Biomol. Chem. 2012, 10, 835;
(f) Lin, A.; Peng, H.; Abdukader, A.; Zhu, C. Eur. J. Org. Chem. 2013, 32, 7286;
(g) Inghal, S.; Jain, S. L.; Sain, B. Chem. Commun. 2009, 2371;
(h) Sakai, N.; Mutsuro, A.; Ikeda, R.; Konakahara, T. Synlett 2013, 1283;
(i) Zhao, P.; Yin, Y.-W. Chin. J. Org. Chem. 2004, 24, 916. (赵萍, 尹应武, 有机化学, 2004, 24, 916).
[4] For selected reviews on the visible light photocatalysis, see:(a) Narayanam, J. M.; Stephenson, C. R. Chem. Soc. Rev. 2011, 40;
(b) Shi, L.; Xia, W. Chem. Soc. Rev. 2012, 41, 7687;
(c) Xuan, J.; Xiao, W. J. Angew. Chem., Int. Ed. 2012, 51, 6828;
(d) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322;
(e) Schultz, D. M.; Yoon, T. P. Science 2014, 343, 1239176;
(f) Shaw, M. H.; Twilton, J.; MacMillan, D.W. C. J. Org. Chem. 2016, 81, 6898;
(g) Karkas, M. D.; Porco, Jr J. A.; Stephenson, C. R. Chem. Rev. 2016, 116, 9683;
(h) Romero, N. A.; Nicewicz, D. A. Chem. Rev. 2016, 116, 10075.
[5] For recent examples on the visible light-induced cyanation reactions, see:(a) Rueping, M.; Zhu, S.; Koenigs, R. M. Chem. Commun. 2011, 47, 12709;
(b) Freeman, D. B.; Furst, L.; Condie, A. G.; Stephenson, C. R. J. Org. Lett. 2012, 14, 94;
(c) Franz, J. F.; Kraus, W. B.; Zeitler, K. Chem. Commun. 2015, 51, 8280;
(d) Hari, D. P.; Konig, B. Org. Lett. 2011, 13, 3852;
(e) Pacheco, O. J. C.; Lipp, A.; Nauth, A. M.; Acke, F.; Dietz, J. P.; Opatz, T. Chem. Eur. J. 2016, 22, 5409.
[6] (a) Zhdankin, V. V.; Stang, P. J. Chem. Rev. 2008, 108, 5299;
b) Zhdankin, V. V. Hypervalent Iodine Chemistry:Preparation, Structure, and Synthetic Applications of Polyvalent Iodine Compounds, Wiley, Chichester, 2013;
(c) Li, Y.-F.; Hari, D.-P.; Vita, M. V.; Waser, J. Angew. Chem., Int. Ed. 2016, 55, 4436.
[7] For recent works on visible light photocatalysis from our group, see:(a) Xuan, J.; Xia, X.-D.; Zeng, T.-T.; Feng, Z.-J.; Chen, J.-R.; Lu, L.-Q.; Xiao, W.-J. Angew. Chem., Int. Ed. 2014, 53, 5653;
(b) Xuan, J.; Feng, Z.-J.; Chen, J.-R.; Lu, L.-Q.; Xiao, W.-J. Chem. Eur. J. 2014, 20, 3045;
(c) Xuan, J.; Zeng, T.-T.; Feng, Z.-J.; Deng, Q.-H.; Chen, J.-R.; Lu, L.-Q.; Xiao, W.-J. Angew. Chem., Int. Ed. 2015, 54, 1625;
(d) Guo, W.; Lu, L.-Q.; Wang, Y.; Wang, Y.-N.; Chen, J.-R.; Xiao, W.-J. Angew. Chem., Int. Ed. 2015, 54, 2265;
(e) Zeng, T.-T.; Xuan, J.; Ding, W.; Wang, K.; Lu, L.-Q.; Xiao, W.-J. Org. Lett. 2015, 17, 4070.
[8] Zhou, Q.-Q.; Guo, W.; Ding, W.; Wu, X.; Chen, X.; Lu, L.-Q.; Xiao, W.-J. Angew. Chem., Int. Ed. 2015, 54, 11196.
[9] For the use of hypervalent iodine CN reagent 2a in organic synthesis, see:(a) Zhdankin, V. V.; Kuehl, C. J.; Krasutsky, A. P.; Bolz, J. T.; Mismash, B.; Woodward, J. K.; Simonsen, A. J. Tetrahedron Lett. 1995, 36, 7975;
(b) Frei, R.; Courant, T.; Wo-drich, M. D.; Waser, J. Chem. Eur. J. 2015, 21, 2662. For representative examples of cyanation reaction using 2b~2d as a cyano source, see:
(c) Barton, D. H. R.; Jaszberenyl, J. C.; Theodorakis, E. A. Tetrahedron 1992, 48, 2613;
(d) Kim, S.; Song, H. J. Synlett 2002, 2110;
(e) Kim, S.; Cho, C. H.; Kim, S.; Uenoyama, Y.; Ryu, I. Synlett 2005, 3160;
(f) Gaspar, B.; Carreira, E. M. Angew. Chem., Int. Ed. 2007, 46, 4519;
(g) Dai, J.-J.; Zhang, W.-W.; Shu, Y.-J.; Sun, Y.-Y.; Xu, J.; Feng, Y.-S.; Xu, H.-J. Chem. Commun. 2016, 52, 6793;
(h) Pawar, A. B.; Chang, S. Org. Lett. 2015, 17, 660;
(i) Shu, Z.; Ji, W.; Wang, X.; Zhou, Y.; Zhang, Y.; Wang, J. Angew. Chem., Int. Ed. 2014, 53, 2186.
[10] For a selected review, see:Xuan, J.; Zhang, Z.-G.; Xiao, W.-J. Angew. Chem., Int. Ed. 2015, 54, 15632.
[11] For recent examples, see:(a) Huang, H.; Zhang, G.; Chen, Y. Angew. Chem., Int. Ed. 2015, 54, 7872;
(b) Tan, H.; Li, H.; Ji, W.; Wang, L. Angew. Chem., Int. Ed. 2015, 54, 8374;
(c) Wang, G.-Z.; Shang, R.; Cheng, W.-M.; Fu, Y. Org. Lett. 2015, 17, 4830;
(d) Ventre, S.; Petronijevi, F. R.; MacMillan, D. W. C. J. Am. Chem. Soc. 2015, 137, 5654;
(e) Zhou, C.; Li, P.-H.; Zhu, X.-J.; Wang, L. Org. Lett. 2015, 17, 6198;
(f) Vaillant, F. L.; Courant, T.; Waser, J. Angew. Chem., Int. Ed. 2015, 54, 11200;
(g) Griffin, J. D.; Zeller, M. A.; Nicewicz, D. A. J. Am. Chem. Soc. 2015, 137, 11340;
(h) Candish, L.; Pitzer, L.; Gomez-Suarez, A.; Glorius, F. Chem. Eur. J. 2016, 22, 4753;
(i) Song, H.-T.; Ding, W.; Zhou, Q.-Q.; Liu, J.; Lu, L.-Q.; Xiao, W.-J. J. Org. Chem. 2016, 81, 7250.
[12] Liu, W.; Ma, Y.; Yin, Y.; Zhao, Y. Bull. Chem. Soc. Jpn. 2006, 79, 577.
[13] Le, C.; MacMillan, D. W. C. J. Am. Chem. Soc. 2015, 137, 11938.
[14] (a) Liu, X.; Wang, Z.; Cheng, X.; Li, C. J. Am. Chem. Soc. 2012, 134, 14330;
(b) Huang, H.; Zhang, G.; Gong, L.; Zhang, S.; Chen, Y. J. Am. Chem. Soc. 2014, 136, 2280;
(c) Yang, J.; Zhang, J.; Qi, L.; Hu, C.; Chen, Y. Chem. Commun. 2015, 51, 5275.

Outlines

/