Article

Fluoranthene-Modified Tetraphenylethene Derivatives: Synthesis, Aggregation-Enhanced Emission Characteristic and Their Highly Sensitive Detection of Picric Acid

  • Bai Wei ,
  • Shi Yang ,
  • Song Chen ,
  • He Jie ,
  • Qin Anjun ,
  • Sun Jing Zhi ,
  • Tang Ben Zhong
Expand
  • a MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027;
    b Guangdong Innovative Research Team, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640;
    c Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Division of Biomedical Engineering, Division of Life Science, State Key Laboratory of Molecular Neuroscience and Institute of Molecular Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong

Received date: 2016-08-14

  Online published: 2016-10-20

Supported by

Project supported by the National Natural Science Foundation of China (No. 51273175), and National Basic Research Program of China (973 Program, No. 2012CB834704).

Abstract

Aggregation-induced emission (AIE) active compounds and materials have become one of the hottest research topics worldwide, due to their unprecedented merits such as ultra-high fluorescence quantum efficiencies as aggregates or in solid state. Up to now, it is still extremely crucial and fundamental to expand the AIE-genic molecular systems for this research area. Here, we prepared two fluoranthene-modified tetraphenylethene (TPE) derivatives, TPE-FA and TPE-DFA, through the Suzuki-Miyaura coupling between boronate-bearing TPE and bromo-bearing fluoranthene under mild reaction condition. The conjugation between fluoranthene and TPE moieties assures that the as-prepared TPE-FA and TPE-DFA both possess aggrega-tion-enhanced emission (AEE) characteristics. The emission maximum of TPE-FA and TPE-DFA as aggregates in THF/water mixtures is at 477 nm and 494 nm, and the absolute quantum yields of the two compounds in solid films are as high as 74.1% and 40.4%, respectively. They can be utilized as fluorescent probes for picric acid with high sensitivity. Their quenching coef-ficients can be as high as 4×104 L·mol-1, while their detection limits can be lower than 1 μg·g-1. These AEE-active molecules are promising to act as fluorescent probes in the detection of other nitro-substituted electron-deficient molecules.

Cite this article

Bai Wei , Shi Yang , Song Chen , He Jie , Qin Anjun , Sun Jing Zhi , Tang Ben Zhong . Fluoranthene-Modified Tetraphenylethene Derivatives: Synthesis, Aggregation-Enhanced Emission Characteristic and Their Highly Sensitive Detection of Picric Acid[J]. Acta Chimica Sinica, 2016 , 74(11) : 893 -901 . DOI: 10.6023/A16080410

References

[1] (a) Basabe-Desmonts, L.; Reinhoudt, D. N.; Crego-Calama, M. Chem. Soc. Rev. 2007, 36, 993;
(b) Bao, Y.; Wang, T.; Li, Q.; Du, F.; Bai, R.; Smet, M.; Dehaen, W. Polym. Chem. 2014, 5, 792;
(c) Yuan, L.; Lin, W.; Zheng, K.; He, L.; Huang, W. Chem. Soc. Rev. 2013, 42, 622;
(d) Dias, F. B.; Bourdakos, K. N.; Jankus, V.; Moss, K. C.; Kamtekar, K. T.; Bhalla, V.; Santos, J.; Bryce, M. R.; Monkman, A. P. Adv. Mater. 2013, 25, 3707;
(e) Li, W.; Pan, Y.; Xiao, R.; Peng, Q.; Zhang, S.; Ma, D.; Li, F.; Shen, F.; Wang, Y.; Yang, B.; Ma, Y. Adv. Funct. Mater. 2014, 24, 1609;
(f) Zhang, Q.; Tsang, D.; Kuwabara, H.; Hatae, Y.; Li, B.; Takahashi, T.; Lee, S. Y.; Yasuda, T.; Adachi, C. Adv. Mater. 2015, 27, 2096.
[2] Birks, J. B. Photophysics of Aromatic Molecules, Wiley, London, 1970.
[3] (a) Luo, J.; Xie, Z.; Lam, J. W. Y.; Cheng, L.; Chen, H.; Qiu, C.; Kwok, H. S.; Zhan, X.; Liu, Y.; Zhu, D.; Tang, B. Z. Chem. Commun. 2001, 37, 1740;
(b) Mei, J.; Hong, Y.; Lam, J. W. Y.; Qin, A.; Tang, Y.; Tang, B. Z. Adv. Mater. 2014, 26, 5429;
(c) Mei, J.; Leung, N. L. C.; Kwok, R. T. K.; Lam, J. W. Y.; Tang, B. Z. Chem. Rev. 2015, 115, 11718;
(d) Wang, H.; Zhao, E.; Lam, J. W. Y.; Tang, B. Z. Mater. Today 2015, 18, 365.
[4] (a) Wang, M.; Zhang, G.; Zhang, D.; Zhu, D.; Tang, B. Z. J. Mater. Chem. 2010, 20, 1858;
(b) Liang, J.; Tang, B. Z.; Liu, B. Chem. Soc. Rev. 2015, 44, 2798;
(c) Zhang, X.; Wang, K.; Liu, M.; Zhang, X.; Tao, L.; Chen, Y.; Wei, Y. Nanoscale 2015, 7, 11486;
(d) Dong, Y. Q.; Lam, J. W. Y.; Tang, B. Z. J. Phys. Chem. Lett. 2015, 6, 3429;
(e) Yang, J.; Huang, J.; Li, Q.; Li, Z. J. Mater. Chem. C 2016, 4, 2663.
[5] (a) Tseng, N.-W.; Liu, J.; Ng, J. C. Y.; Lam, J. W. Y.; Sung, H. H. Y.; Williams, I. D.; Tang, B. Z. Chem. Sci. 2012, 3, 493;
(b) Liang, G.; Lam, J. W. Y.; Qin, W.; Li, J.; Xie, N.; Tang, B. Z. Chem. Commun. 2014, 50, 1725;
(c) Parrot, E. P. J.; Tan, N. Y.; Hu, R.; Zeitler, J. A.; Tang, B. Z.; Pickwell-MacPherson, E. Mater. Horiz. 2014, 1, 251;
(d) Yuan, H.; Wang, K.; Yang, K.; Liu, B.; Zou, B. J. Phys. Chem. Lett. 2014, 5, 2968;
(e) Sun, G.; Zhao, Y.; Liang, W. J. Chem. Theory Comput. 2015, 11, 2257.
[6] (a) Zhao, Z.; Lam, J. W. Y.; Tang, B. Z. J. Mater. Chem. 2012, 22, 23726;
(b) Wang, J.; Mei, J.; Hu, R.; Sun, J. Z.; Qin, A.; Tang, B. Z. J. Am. Chem. Soc. 2012, 134, 9956;
(c) Bai, W.; Wang, Z.; Tong, J.; Mei, J.; Qin, A.; Sun, J. Z.; Tang, B. Z. Chem. Commun. 2015, 51, 1089;
(d) Chen, S.; Hong, Y.; Zeng, Y.; Sun, Q.; Liu, Y.; Zhao, E.; Bai, G.; Qu, J.; Hao, J.; Tang, B. Z. Chem. Eur. J. 2015, 21, 4315;
(e) Wang, C.; Xu, B.; Li, M.; Chi, Z.; Xie, Y.; Li, Q.; Li, Z. Mater. Horiz. 2016, 3, 220.
[7] (a) He, J.; Xu, B.; Chen, F.; Xia, H.; Li, K.; Ye, L.; Tian, W. J. Phys. Chem. C 2009, 113, 9892;
(b) Lu, H.; Xu, B.; Dong, Y.; Chen, F.; Li, Y.; Li, Z.; He, J.; Li, H.; Tian, W. Langmuir 2010, 26, 6838;
(c) Chen, J. L.; Ma, S. Q.; Xu, B.; Zhang, J. B.; Dong, Y. J.; Tian, W. J. Chin. Sci. Bull. 2013, 58, 2747.
[8] (a) Chen, M.; Li, L.; Nie, H.; Tong, J.; Yan, L.; Xu, B.; Sun, J. Z.; Tian, W.; Zhao, Z.; Qin, A.; Tang, B. Z. Chem. Sci. 2015, 6, 1932;
(b) Chen, M.; Li, L.; Nie, H.; Shi, Y.; Mei, J.; Wang, J.; Sun, J. Z.; Qin, A.; Tang, B. Z. Chem. Commun. 2015, 51, 10710;
(c) Pan, L. X.; Luo, W. W.; Chen, M.; Liu, J. K.; Xu, L.; Hu, R. R.; Zhao, Z. J.; Qin, A. J.; Tang, B. Z. Chin. J. Org. Chem. 2016, 36, 1316(in Chinese). (潘凌翔, 罗文文, 陈明, 刘峻恺, 徐露, 胡蓉蓉, 赵祖金, 秦安军, 唐本忠, 有机化学, 2016, 36, 1316.)
[9] (a) Hu, R.; Lam, J. W. Y.; Liu, Y.; Zhang, X.; Tang, B. Z. Chem. Eur. J. 2013, 19, 5617;
(b) Li, L.; Chen, M.; Zhang, H.; Nie, H.; Sun, J. Z.; Qin, A.; Tang, B. Z. Chem. Commun. 2015, 51, 4830;
(c) Xun, Z. Q.; Tang, H. Y.; Zeng, Y.; Chen, J. P.; Yu, T. J.; Zhang, X. H.; Li, Y. Acta Chim. Sinica 2015, 73, 819(in Chinese). (寻知庆, 唐海云, 曾毅, 陈金平, 于天君, 张小辉, 李嫕, 化学学报, 2015, 73, 819.)
[10] Wang, Z.; Bai, W.; Tong, J.; Wang, Y. J.; Qin, A.; Sun, J. Z.; Tang, B. Z. Chem. Commun. 2016, 52, 10365.
[11] Yang, J.; Li, L.; Yu, Y.; Ren, Z.; Peng, Q.; Ye, S.; Li, Q.; Li, Z. Mater. Chem. Front. 2017, DOI:10.1039/c6qm00014b.
[12] (a) Song, Z.; Zhang, W.; Jiang, M.; Sung, H. H. Y.; Kwok, R. T. K.; Nie, H.; Williams, I. D.; Liu, B.; Tang, B. Z. Adv. Funct. Mater. 2016, 26, 824;
(b) Zhao, Z.; Chen, S.; Chan, C. Y. K.; Lam, J. W. Y.; Jim, C. K. W.; Lu, P.; Chang, Z.; Kwok, H. S.; Qiu, H.; Tang, B. Z. Chem. Asian J. 2012, 7, 484;
(c) Tong, J.; Wang, Y.; Mei, J.; Wang, J.; Qin, A.; Sun, J. Z.; Tang, B. Z. Chem. Eur. J. 2014, 20, 4661;
(d) Wang, Y. J.; Shi, Y.; Wang, Z.; Zhu, Z.; Zhao, X.; Nie, H.; Qian, J.; Qin, A.; Sun, J. Z.; Tang, B. Z. Chem. Eur. J. 2016, 22, 9784.
[13] (a) Shao, A.; Xie, Y.; Zhu S.; Guo, Z.; Zhu, S.; Guo, J.; Shi, P.; James, T. D.; Tian, H.; Zhu, W.-H. Angew. Chem., Int. Ed. 2015, 54, 7275;
(b) Guo, Z.; Shao, A.; Zhu, W.-H. J. Mater. Chem. C 2016, 4, 2640;
(c) Xia, Z. Q.; Shao, A. D.; Li, Q.; Zhu, S. Q.; Zhu, W. H. Acta Chim. Sinica 2016, 74, 351(in Chinese). (夏志清, 邵安东, 李强, 朱世琴, 朱为宏, 化学学报, 2016, 74, 351.)
[14] (a) Ding, L.; Ying, H.-Z.; Zhou, Y.; Lei, T.; Pei, J. Org. Lett. 2010, 12, 5522;
(b) Zhou, Y.; Ding, L.; Shi, K.; Dai, Y.-Z.; Ai, N.; Wang, J.; Pei, J. Adv. Mater. 2012, 24, 957;
(c) Zheng, Y.-Q.; Dai, Y.-Z.; Zhou, Y.; Wang, J.-Y.; Pei, J. Chem. Commun. 2014, 50, 1591;
(d) Saranya, G.; Kolandaivel, P.; Senthilkumar, K. J. Phys. Chem. A 2011, 115, 14647;
(e) Goel, A.; Kumar, V.; Chaurasia, S.; Rawat, M.; Prasad, R.; Anand, R. S. J. Org. Chem. 2010, 75, 3656;
(f) Goel, A.; Sharma, A.; Kathuria, M.; Bhattacharjee, A.; Verma, A.; Mishra, P. R.; Nazir, A.; Mitra, K. Org. Lett. 2014, 16, 756;
(g) Han, L.; Zhang, Y.; Chen, W.; Cheng, X.; Ye, K.; Zhang, J.; Wang, Y. Chem. Commun. 2015, 51, 4477.
[15] Li, X.-G.; Liao, Y.; Huang, M.-R.; Strong, V.; Kaner, R. B. Chem. Sci. 2013, 4, 1970.
[16] (a) Venkatramaiah, N.; Kumar, S.; Patil, S. Chem. Eur. J. 2012, 18, 14745;
(b) Kumar, S.; Venkatramaiah, N.; Patil, S. J. Phys. Chem. C 2013, 117, 7236.
[17] Chandrasekaran, Y.; Venkatramaiah, N.; Patil, S. Chem. Eur. J. 2016, 22, 5288.
[18] (a) Feng, H.-T.; Zheng, Y.-S. Chem. Eur. J. 2014, 20, 195;
(b) Wang, X.; Bian, J.; Xu, L.; Wang, H.; Feng, S. Phys. Chem. Chem. Phys. 2015, 17, 32472.

Outlines

/