Article

Ultrathin Luminescence Film Based on Gold Nanoclusters with Aggregation-Induced Emission

Expand
  • State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029

Received date: 2016-08-24

  Online published: 2016-10-20

Supported by

Project supported by the National Basic Research Program of China (973 Program, No. 2014CB932103), and the National Natural Science Foundation of China (Nos. 21575010 and 21375006).

Abstract

Solution-based fluorescent probes usually need to be fabricated into fluorescent films for device application. The fabricated fluorescent films can have not only the original advantages of probes (e.g., high sensitivity and selectivity) but also several unique properties, such as tunable shape and size, recycling, non-invasion, good stability and portability, and real-time detection. However, the sensitivity of fluorescent films is often reduced by the aggregation-caused quenching (ACQ) effect during the film formation:fluorophores with high concentration inherently tend to aggregate through intermolecular π-π in-teractions. Moreover, the sensing performances of the fluorescent film are significantly influenced by the diffusion rate of analytes:the thicker the films, the slower the response time towards target molecules. Therefore, aggregation-induced emission (AIE) materials are urgently needed to be developed to overcome these shortcomings. On the other hand, excellent photostability could be better for the practical applications in the integrated sensor devices. However, most of the present AIEgens are π-conjugated organic molecules with poor ability against photobleaching. Interestingly, several fluorescent gold nanoclusters (AuNCs) with higher photostability were discovered to have AIE property. In this work, two kinds of negatively-charged fluorescent AuNCs were selected:bovine serum albumin capped AuNCs (BSA-AuNCs) and AIE-active glutathione capped AuNCs (GSH-AuNCs). Quartz glass slides were alternately dipped into a poly(allylamine) (PAH) solution and AuNCs solutions to fabricate GSH-AuNCs/PAH (yellow-emitting) and BSA-AuNCs/PAH (red-emitting) fluorescent ultrathin films, respectively. As expected, the photoluminescence quantum yield of GSH-AuNCs is two-fold higher in GSH-AuNCs/PAH ultrathin films than in solution. The fluorescence of (GSH-AuNCs/PAH)5 ultrathin film could be quenched effectively by 2,4,6-trinitrotoluene (TNT) in 10 min, while the fluorescence intensity of (BSA-AuNCs/PAH)25 ultrathin film remain almost unchanged. Based on this phenomenon, a novel ratio fluorescence sensing system was constructed by using (BSA-AuNCs/PAH)25 ultrathin film as control and (GSH-AuNCs/PAH)5 ultrathin film as the detection unit. The fluorescence intensity ratios (I565/I620) have a linear relationship with the log concentrations of TNT in the range of 10-6~10-9 mol/L with detection limit of 1.0×10-10 mol/L.

Cite this article

Guan Weijiang, Zhou Wenjuan, Lü Chao . Ultrathin Luminescence Film Based on Gold Nanoclusters with Aggregation-Induced Emission[J]. Acta Chimica Sinica, 2016 , 74(11) : 929 -934 . DOI: 10.6023/A16080427

References

[1] Basabe-Desmonts, L.; Reinhoudt, D. N.; Crego-Calama, M. Chem. Soc. Rev. 2007, 36, 993.
[2] Li, X. H.; Gao, X. H.; Shi, W.; Ma, H. M. Chem. Rev. 2014, 114, 590.
[3] Thomas Ⅲ, S. W.; Joly, G. D.; Swager, T. M. Chem. Rev. 2007, 107, 1339.
[4] Ding, L.; Fang, Y. Chem. Soc. Rev. 2010, 39, 4258.
[5] Stich, M. I. J.; Fischer, L. H.; Wolfbeis, O. S. Chem. Soc. Rev. 2010, 39, 3102.
[6] Guan, W. J.; Zhou, W. J.; Lu, J.; Lu, C. Chem. Soc. Rev. 2015, 44, 6981.
[7] Zhao, Z. J.; Lu, P.; Lam, J. W. Y.; Wang, Z. M.; Chan, C. Y. K.; Sung, H. H. Y.; Williams, I. D.; Ma, Y. G.; Tang, B. Z. Chem. Sci. 2011, 2, 672.
[8] McQuade, D. T.; Pullen, E. A.; Swager, T. M. Chem. Rev. 2000, 100, 2537.
[9] Zhu, C. L.; Liu, L. B.; Yang, Q.; Lv, F. T.; Wang, S. Chem. Rev. 2012, 112, 4687.
[10] Luo, J. D.; Xie, Z. L.; Lam, J. W. Y.; Cheng, L.; Chen, H. Y.; Qiu, C. F.; Kwok, H. S.; Zhan, X. W.; Liu, Y. Q.; Zhu, D. B.; Tang, B. Z. Chem. Commun. 2001, 1740.
[11] Guan, W. J.; Zhou, W. J.; Lu, C.; Tang, B. Z. Angew. Chem., Int. Ed. 2015, 54, 15160.
[12] Li, Y. D.; Zhang, H.; Wang, X. C.; Wang, F.; Xia, Y. J. Acta Chim. Sinica 2015, 73, 1055. (李昱达, 张恒, 王迅昶, 汪锋, 夏养君, 化学学报, 2015, 73, 1055.)
[13] Xia, Z. Q.; Shao, A. D.; Li, Q.; Zhu, S. Q.; Zhu, W. H. Acta Chim. Sinica 2016, 74, 351. (夏志清, 邵安东, 李强, 朱世琴, 朱为宏, 化学学报, 2016, 74, 351.)
[14] Mei, J.; Leung, N. L. C.; Kwok, R. T. K.; Lam, J. W. Y.; Tang, B. Z. Chem. Rev. 2015, 115, 11718.
[15] Guan, W. J.; Wang, S.; Lu, C.; Tang, B. Z. Nat. Commun. 2016, 7, 11811.
[16] Chu, Y. H.; Han, H.; Li, W.; Liu, Z. T.; Han, X. E. Chin. J. Org. Chem. 2016, 36, 336. (褚衍环, 韩辉, 李维, 刘振涛, 韩相恩, 有机化学, 2016, 36, 336.)
[17] Niu, Y. F.; Qian, Y.; Hu, X. D. Chin. J. Org. Chem. 2016, 36, 555. (牛艳芳, 钱鹰, 胡秀东, 有机化学, 2016, 36, 555.)
[18] Ghosh, K. R.; Saha, S. K.; Gao, J. P.; Wang, Z. Y. Chem. Commun. 2014, 50, 716.
[19] Zhang, Y. Q.; Li, X. D.; Gao, L. J.; Qiu, J. H.; Heng, L. P.; Tang, B. Z.; Jiang, L. ChemPhysChem 2014, 15, 507.
[20] Zhao, N.; Lam, J. W. Y.; Sung, H. H. Y.; Su, H. M.; Williams, I. D.; Wong, K. S.; Tang, B. Z. Chem.-Eur. J. 2014, 20, 133.
[21] Sun, J. B.; Zhang, G. H.; Jia, X. Y.; Xue, P. C.; Jia, J. H.; Lu, R. Acta Chim. Sinica 2016, 74, 165. (孙静波, 张恭贺, 贾小宇, 薛鹏冲, 贾俊辉, 卢然, 化学学报, 2016, 74, 165.)
[22] Li, Y.; Wang, X.; Sun, J. Q. Chem. Soc. Rev. 2012, 41, 5998.
[23] Luo, Z. T.; Yuan, X.; Yu, Y.; Zhang, Q. B.; Leong, D. T.; Lee, J. Y.; Xie, J. P. J. Am. Chem. Soc. 2012, 134, 16662.
[24] Yang, W. T.; Guo, W. S.; Zhang, B. B.; Chang, J. Acta Chim. Sinica 2014, 72, 1209. (杨维涛, 郭伟圣, 张兵波, 常津, 化学学报, 2014, 72, 1209.)
[25] Tian, R.; Zhang, S. T.; Li, M. W.; Zhou, Y. Q.; Lu, B.; Yan, D. P.; Wei, M.; Evans, D. G.; Duan, X. Adv. Funct. Mater. 2015, 25, 5006.
[26] Xie, J. P.; Zheng, Y. G.; Ying, J. Y. J. Am. Chem. Soc. 2009, 131, 888.
[27] Guan, W. J.; Lu, J.; Zhou, W. J.; Lu, C. Chem. Commun. 2014, 50, 11895.
[28] Sun, X. C.; Wang, Y.; Lei, Y. Chem. Soc. Rev. 2015, 44, 8019,
[29] Wang, K.; Liu, Z. L.; Jiang, K. Acta Chim. Sinica 2014, 72, 590. (王魁, 刘自力, 蒋凯, 化学学报, 2014, 72, 590.)
[30] Makinen, M.; Nousiainen, M.; Sillanpaa, M. Mass Spectrom. Rev. 2011, 30, 940.
[31] Capka, L.; Vecera, Z.; Mikuska, P.; Sestak, J.; Kahle, V. J. Chromatogr. A 2015, 1388, 167.
[32] Dasary, S. S. R.; Singh, A. K.; Senapati, D.; Yu, H. T.; Ray, P. C. J. Am. Chem. Soc. 2009, 131, 13806.

Outlines

/