First-Principles Theory Investigation on Structural and Photoelectronic Properties of Perovskites:Trigonal versus Hexagonal HC(NH2)2PbI3
Received date: 2016-08-26
Online published: 2016-10-20
Supported by
Project supported by the National Natural Science Foundation of China (21303266), the Fundamental Research Funds for the Central Universities (15CX05050A, 15CX08010A, and 14CX02214A), and Postgraduate's Innovation Project (YCXJ2016084).
Formamidinium lead halide perovskite FAPbI3(FA=HC(NH2)2+) has drawn wide attention as efficient photoelectronic conversion material.First-principles calculations were performed by using the Vienna ab initio simulation package (VASP) based on density functional theory.The structure configuration,electronic property,absorption spectrum,and bonding energy were analyzed to elucidate the structural and photoelectronic properties of trigonal and hexagonal FAPbI3 perovskites.Results showed that the crystal deformation from trigonal to hexagonal crystal would distort the PbI3 framework,change the covalent/ionic Pb-I bonds,and eventually alter the semiconductor bandgaps.The trigonal and hexagonal FAPbI3 perovskites are both direct-bandgap semiconductors.The direct-bandgap nature of trigonal crystal locates at Z (0,0,0.5) symmetry point with the ideal bandgap of ca.1.50 eV;the direct-bandgap nature of hexagonal crystal locates at Γ(0,0,0) symmetry point with the wide bandgap of ca.2.50 eV.For the both crystals,the main contributions to VBM (valence band maximum) are I 5p orbitals with a little overlapping of Pb 6s orbitals,and the main components of CBM (conduction band minimum) are Pb 6p orbitals.The FA cations do not directly participate into the electron transition process,just acting as charge donors to supply PbI3 framework with more than 0.7 e.There exists both covalent and ionic interactions between Pb and I ions.Compared with the hexagonal crystal,the trigonal FAPbI3 possesses smaller electron and hole effective masses.It exhibits dramatic red shifted absorption spectrum and a better absorption efficiency than hexagonal FAPbI3 and tetragonal MAPbI3(MA=CH3NH3+) perovskites.Bonding energy analyses showed that the hexagonal FAPbI3 was more stable than the trigonal crystal,and interaction between FA and PbI3 framework was stronger than that between MA and PbI3 framework.Our results could provide theoretical guidance for the experimental design and synthesis of FAPbI3 perovskite solar cells.
Zhao Zigang , Lu Xiaoqing , Li Ke , Wei Shuxian , Liu Xuefeng , Niu Kai , Guo Wenyue . First-Principles Theory Investigation on Structural and Photoelectronic Properties of Perovskites:Trigonal versus Hexagonal HC(NH2)2PbI3[J]. Acta Chimica Sinica, 2016 , 74(12) : 1003 -1008 . DOI: 10.6023/A16080437
[1] Liu, M. Z.; Johnston, M. B.; Snaith, H. J. Nature 2013, 501, 395.
[2] Burschka, J.; Pellet, N.; Moon, S. J.; Baker, R. H.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M. Nature 2013, 499, 316.
[3] Mei, A. Y.; Li, X.; Liu, L. F.; Ku, Z. L.; Liu, T. F.; Rong, Y. G.; Xu, M.; Hu, M.; Chen, J. Z.; Yang, Y.; Grätzel, M.; Han, H. W. Science 2014, 345, 295.
[4] Zhou, H. P.; Chen, Q.; Li, G.; Luo, S.; Song, T. B.; Duan, H. S.; Hong, Z. R.; You, J. B.; Liu, Y. S.; Yang, Y. Science 2014, 345, 542.
[5] Jeon, N. J.; Noh, J. H.; Yang, W. S.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I. Nature 2015, 517, 476.
[6] Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. J. Am. Chem. Soc. 2009, 131, 6050.
[7] Boix, P. P.; Nonomura, K.; Mathews, N.; Mhaisalkar, S. G. Mater. Today 2014, 17, 16.
[8] Eperon, G. E.; Stranks, S. D.; Menelaou, C.; Johnston, M. B.; Herz, L.; Snaith, H. J. Energy Environ. Sci. 2014, 7, 982.
[9] Pellet, N.; Gao, P.; Gregori, G.; Yang, T.-Y.; Nazeeruddin, M. K.; Maier, J.; Grätzel, M. Angew. Chem. Int. Ed. 2014, 53, 3151.
[10] Yang, W. S.; Noh, J. H.; Jeon, N. J.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I. Science 2015, 348, 1234.
[11] Binek, A.; Hanusch, F. C.; Docampo, P.; Bein, T. J. Phys. Chem. Lett. 2015, 6, 1249.
[12] Frost, J. M.; Butler, K. T.; Brivio, F.; Hendon, C. H.; van Schilfgaarde, M.; Walsh, A. Nano Lett. 2014, 14, 2584.
[13] Amat, A.; Mosconi, E.; Ronca, E.; Quarti, C.; Umari, P.; Nazeeruddin, M. K.; Grätzel, M.; De Angelis, F. Nano Lett. 2014, 14, 3608.
[14] Kresse, G.; Hafner, J. Phys. Rev. B 1993, 47, 558.
[15] Blöchl, P. E. Phys. Rev. B 1994, 50, 17953.
[16] Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865.
[17] Monkhorst, H. J.; Pack, J. D. Phys. Rev. B 1976, 13, 5188.
[18] Wang, Y.; Gould, T.; Dobson, J. F.; Zhang, H.; Yang, H. G.; Yao, X. D.; Zhao, H. J. Phys. Chem. Chem. Phys. 2013, 16, 1424.
[19] Even, J.; Pedesseau, L.; Jancu, J. M.; Katan, C. J. Phys. Chem. Lett. 2013, 4, 2999.
[20] Mosconi, E.; Amat, A.; Nazeeruddin, M. K.; Grätzel, M.; De Angelis, F. J. Phys. Chem. C 2013, 117, 13902.
[21] Borriello, I.; Cantele, G.; Ninno, D. Phys. Rev. B 2008, 77, 235214.
[22] Stoumpos, C. C.; Malliakas, C. D.; Kanatzidis, M. G. Inorg. Chem. 2013, 52, 9019.
[23] Zhao, Z. G.; Niu, Y. Q.; Zhao, Y.; Song, Q. H.; Xin, L.; Lu, X. Q. Acta Chim. Sinica 2016, 74, 689. (赵兹罡, 牛永强, 赵洋, 宋清华, 忻灵, 鲁效庆, 化学学报, 2016, 74, 689.)
[24] Geng, W.; Zhang, L.; Zhang, Y. N.; Lau, W. M.; Liu, L. M. J. Phys. Chem. C 2014, 118, 19565.
[25] Koh, T. M.; Fu, K.; Fang, Y. N.; Chen, S.; Sum, T. C.; Mathews, N.; Mhaisalkar, S. G.; Boix, P. P.; Baikie, T. J. Phys. Chem. C 2014, 118, 16458.
[26] Pang, S. P.; Hu, H.; Zhang, J. L.; Lv, S. L.; Yu, Y. M.; Wei, F.; Qin, T. S.; Xu, H. X.; Liu, Z. H.; Cui, G. L. Chem. Mater. 2014, 26, 1485.
[27] Hu, H.; Wang, D.; Zhou, Y. Y.; Zhang, J. L.; Lv, S. L.; Pang, S. P.; Chen, X.; Liu, Z. H.; Padture, N. P.; Cui, G. L. RSC Adv. 2014, 4, 28964.
[28] Yuan, J.; Gao, B.; Wang, W.; Wang, J. Acta Phys.-Chim. Sin. 2015, 31, 1302. (袁俊辉, 高博, 汪文, 王嘉赋, 物理化学学报, 2015, 31, 1302.)
[29] Sun, J.; Wang, H. T.; He, J. L.; Tian, Y. J. Phys. Rev. B 2005, 71, 125132.
[30] Saha, S.; Sinha, T. P.; Mookerjee, A. Phys. Rev. B 2000, 62, 8828.
[31] Li, W.; Thirumurugan, A.; Barton, P. T.; Lin, Z.; Henke, S.; Yeung, H. H. M.; Wharmby, M. T.; Bithell, E. G.; Howard, C. J.; Cheetham, A. K. J. Am. Chem. Soc. 2014, 136, 7801.
/
〈 |
|
〉 |