Doping and Heterojunctional Cooperation of NaNbO3 by Fe and Their Photocatalytic Properties
Received date: 2016-08-12
Online published: 2016-11-24
Supported by
Project supported by the Foundation of National Key Scientific Instrument and Equipment Development Project of China (No. 2014YQ060773) and the Priority Academic Program Development of Jiangsu Higher Education Institutions.
The perovskite-type NaNbO3 were prepared through a solvothermal process under a moderate condition followed by calcinations at high temperature.The Fe3+-doping inside the NaNbO3 lattice and the heterojunctions between α-Fe2O3 and NaNbO3 were acquired synchronously in a similar process by treating NaNbO3 with ferric nitrates.The photocatalytic activity of catalysts was evaluated from the photodegradation of Rhodamine B (RhB) in aqueous solution under UV light irradiation and the significant enhancement of degradation rate of aqueous RhB on modified NaNbO3 was observed,with the degradation ratio of RhB reached as high as 95% within 1 h,and the quasi-first-grade rate constant of the RhB degradation reaction over the modified NaNbO3 reached almost 7 times of the pristine one under the experimental conditions.Characterizations by X-ray diffraction (XRD),scanning electron microscopy (SEM),X-ray photoelectron spectroscopy (XPS),UV-vis diffuse reflectance spectrophotometry (DRS),adsorption-desorption of N2 at low temperature (BET calculation),photoluminescence spectroscopy (PL),electron spin resonance spectroscopy (ESR) and photocurrent measurement were performed.The compositions and structures of the as-prepared raw and modified catalysts were carefully identified.It is found that the optimal mass fraction of Fe in modified catalysts is around 2.5%,with about 30% of it exists as Fe3+ inside the lattice of NaNbO3 and the remainder as α-Fe2O3 outside the NaNbO3 lattice.The results of characterizations or measurements suggest that a moderate Nb5+ in NaNbO3 can be substituted by Fe3+ while the perovskite-type structure of NaNbO3 remains unchanging.The moderate Fe-doping into the lattice of NaNbO3 improved the photocatalytic performance of NaNbO3 by the donor level of impurities,charge capturing and adsorption of dissolved oxygen.A fitting amount of α-Fe2O3 cooperates harmoniously with NaNbO3 in degradation of RhB by enhancing the light quantum efficiency through the migration and jumping of electrons or holes between α-Fe2O3 and NaNbO3.It is proposed that the modification (i) promotes the excitation of photocatalysts indicated by an improved light adsorption of modified catalysts on DRS,(ii) suppresses the recombination of photogenerated charge carriers revealed by PL spectra,and (iii) promotes the charge transfer founded by photocurrent measurements.
Key words: NaNbO3; iron modification; photocatalysis; Rhodamine B; promotion mechanism
Cui Suzhen , Yang Hanpei , Sun Huihua , Nie Kun , Wu Junming . Doping and Heterojunctional Cooperation of NaNbO3 by Fe and Their Photocatalytic Properties[J]. Acta Chimica Sinica, 2016 , 74(12) : 995 -1002 . DOI: 10.6023/A16080404
[1] Kisch, H. Angew. Chem. Int. Ed. 2013, 52, 812.
[2] Cao, S. W.; Low, J. X.; Yu, J. G.; Jaroniec, M. Adv. Mater. 2015, 27, 2150.
[3] Liu, X. H.; Wu, Z. C.; Zhao, Y. W.; Yang, Y. C.; Fu, Y. B. Acta Chim. Sinica 2009, 67, 507(in Chinese). (刘秀华, 吴仲成, 赵雅文, 杨宇川, 傅依备, 化学学报, 2009, 67, 507.)
[4] Wan, Z. Q.; Zheng, S. N.; Jia, C. Y.; Yan, W. Acta Chim. Sinica 2009, 67, 403(in Chinese). (万中全, 郑树楠, 贾春阳, 延卫, 化学学报, 2009, 67, 403.)
[5] Kang, Z. J.; Yao, Y. H.; Xu, G. H. Mol.Catal. (China) 2004, 18, 468(in Chinese). (康振晋, 姚艳红, 许桂花, 分子催化, 2004, 18, 468.)
[6] Fu, X. X.; Yang, Q. H.; Sang, L. X. Chem. J. Chin. Univ. 2002, 23, 283(in Chinese). (傅希贤, 杨秋华, 桑丽霞, 高等学校化学学报, 2002, 23, 283.)
[7] Li, G. Q.; Yang, N.; Wang, W. L.; Zhang, W. F. J. Phys. Chem. C 2009, 113, 14829.
[8] Lv, J.; KaKo, T.; Li, Z. S.; Zou, Z. G.; Ye, J. H. J. Phys. Chem. C 2010, 114, 6157.
[9] Shi, H. F.; Chen, G. Q.; Zou, Z. G. Appl. Catal. B-Environ. 2014, 156-157, 378.
[10] Lan, B. Y.; Shi, H. F. J. At. Mol. Phys. 2014, 31, 648. (in Chinese). (蓝奔月, 史海峰, 原子与分子物理学报, 2014, 31, 648.)
[11] Yao, L. Z.; Kong, D. S.; Du, J. Y.; Wang, Z.; Zhang, J. W.; Wang, N.; Li, W. J.; Feng, Y. Y. Acta Phys.-Chim. Sin. 2015, 31, 1895(in Chinese). (姚利珍, 孔德生, 杜玖瑶, 王泽, 张经纬, 王娜, 李文娟, 冯媛媛, 物理化学学报, 2015, 31, 1895.)
[12] Ghorai, T. K.; Chakraborty, M.; Pramanik, P. J. Alloys Compd. 2011, 509, 8158.
[13] Xie, J.; Zhang, L.; Li, M. X.; Hao, Y. J.; Lian, Y. W.; Li, Z.; Wei, Y. Ceram. Int. 2015, 41, 9420.
[14] Su, B. T.; Sun, J. X.; Hu, C. L.; Zhang, X. H.; Fei, P.; Lei, Z. Q. Acta Phys.-Chim. Sin. 2009, 25, 1561(in Chinese). (苏碧桃, 孙佳星, 胡常林, 张小红, 费鹏, 雷自强, 物理化学学报, 2009, 25, 1561.)
[15] Li, Z. J.; Shen, W. Z.; He, W. S.; Zu, X. T. J. Hazard. Mater. 2008, 155, 590.
[16] Gao, S. M.S. Thesis, Harbin Institute of Technology, Harbin, 2010, (in Chinese). (郜帅, 硕士论文, 哈尔滨工业大学, 哈尔滨, 2010.)
[17] Xu, H.; Liu, C. T.; Li, H. M.; Xu, Y. G.; Xia, J. X.; Yin, S.; Liu, L.; Wu, X. J. Alloys Compd. 2011, 509, 9157.
[18] Chen, N. N.; Li, G. Q.; Zheng, W. F. Physica B 2014, 447, 12.
[19] Das, R.; Sharma, S.; Mandal, K. J. Magn. Magn. Mater. 2016, 401, 129.
[20] Yin, Q. Q.; Qiao, R.; Zhu, L. L.; Li, Z. Q.; Li, M. M.; Wu, W. J. Mater. Lett. 2014, 135, 135.
[21] Mishra, M.; Chun, D.-M. Appl. Catal. A-Gen. 2015, 498, 126.
[22] Grosvenor, A. P.; Kobe, B. A.; Biesinger, M. C.; McIntyre, N. S. Surf. Interface Anal. 2004, 36, 1564.
[23] Tian, J. J.; Gao, H. P.; Deng, W. B.; Zheng, H. W.; Tan, F. R.; Zhang, W. F. J. Alloys Compd. 2016, 687, 529.
[24] Wang, T.; Yang, G. D.; Liu, J.; Yang, B. L.; Ding, S. J.; Yan, Z. F.; Xiao, T. C. Appl. Surf. Sci. 2014, 311, 314.
[25] Shi, H. F.; Lan, B. Y.; Zhang, C. L.; Zou, Z. G. J. Phys. Chem. Solids 2014, 75, 74.
[26] Zhang, Y. J.; Zhang, D. K.; Guo, W. M.; Chen, S. J. J. Alloys Compd. 2016, 685, 84.
[27] Jiang, J.; Zhang, X.; Sun, P. B.; Zhang, L. Z. J. Phys. Chem. C 2011, 115, 20555.
[28] Dong, G.; Zhu, Z. Q.; Liu, Q. J. J. Func. Mater. 2011, 42, 2217(in Chinese). (董刚, 朱忠其, 柳清菊, 功能材料, 2011, 42, 2217.)
[29] Lin, H. J.; Yang, T.-S.; Wang, M.-C.; His, C.-S. J. Alloys Compd. 2014, 610, 478.
[30] Asiltürk, M.; Say?lkan, F.; Arpac, E. J. Photochem. Photobiol., A:Chem. 2009, 203, 64.
[31] Liang, H.; Hong, Y. X.; Zhu, C. Q.; Li, S. H.; Chen, Y.; Liu, Z. L.; Ye, D. Q. Catal. Today 2013, 201, 98.
[32] Sayyar, Z.; Babaluo, A. A.; Shahrouzi, J. R. Appl. Surf. Sci. 2015, 335, 1.
[33] Tang, Z. Y.; Song, S. D.; Liu, J. H.; Pan, L. Z.; Nan, J. M. Acta Phys.-Chim. Sin. 2003, 19, 785(in Chinese). (唐致远, 宋世栋, 刘建华, 潘丽珠, 南俊民, 物理化学学报, 2003, 19, 785.)
[34] Zhang, J. Y.; Tan, D. D.; Weng, X. L.; Wu, Z. B. Appl. Catal. B-Environ. 2015, 172-173, 18.
[35] Xu, Q. C.; Wellia, D. V.; Ning, Y. H.; Amal, R.; Tian, T. T. Y. J. Phys. Chem. C 2011, 115, 7419.
[36] Xu, H.; Yan, J.; Xu, Y. G.; Song, Y. H.; Li, H. M.; Xia, J. X.; Huang, C. J.; Wan, H. L. Appl. Catal. B-Environ. 2013, 129, 182.
[37] Bai, S.; Jiang, W. Y.; Li, Z. Q.; Xiong, Y. J. ChemNanoMat 2015, 1, 223.
[38] Qi, C. D.; Liu, X. T.; Ma, J.; Lin, C. Y.; Li, X. W.; Zhang, H. J.; Chemosphere 2016, 151, 280.
[39] Liu, G. G.; Zhao, J. C.; Hidaka, H. J. Photochem. Photobiol., A:Chem. 2000, 133, 83.
[40] Xiang, Q. J.; Yu, J. G.; Jaroniec, M. Chem. Soc. Rev. 2012, 41, 782.
/
〈 |
|
〉 |