Article

Tetraphenylethene-Containing Alkynone Derivatives: Design and Synthesis, Aggregation-Induced Emission Characteristics, and the Selective Fluorescence Detection of Pd2+

  • Huang Yuzhang ,
  • Lei Luoqi ,
  • Zheng Chao ,
  • Wei Bo ,
  • Zhao Zujin ,
  • Qin Anjun ,
  • Hu Rongrong ,
  • Tang Ben Zhong
Expand
  • a State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China;
    b Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China

Received date: 2016-08-25

  Online published: 2016-11-24

Supported by

Project supported by the National Basic Research Program of China (973 Program; 2013CB834701), the National Natural Science Foundation of China (21404041, 21490573 and 21490574), the Guangdong Natural Science Funds (2016A030306045), the Innovation and Technology Commission (ITC-CNERC14S01), the Fundamental Research Funds for the Central Universities (2015ZJ002 and 2015ZY013), and the Guangdong Innovative Research Team Program (201101C0105067115).

Abstract

Organic luminescent materials with aggregation-induced emission (AIE) characteristics have attracted much attention among the scientists in the fields of optoelectronic devices and fluorescence biotechnology. AIE materials overcomes the aggregation-caused quenching problem of traditional organic fluorescent compounds, which possess high fluorescence quantum efficiency in the aggregated states. Thanks to the great research effort of worldwide scientists, a large variety of AIE materials have been developed and the underlying mechanism has been rapidly explored. The deep understanding of the structure-property relationship of AIE compounds is still in an urgent demand for the design of new materials. In this work, based on the classical propeller-shaped AIEgen, tetraphenylethene (TPE), we designed and synthesized a series of electron donor/acceptor-containing alkynone derivatives with AIE feature such as cyano, nitro, butyl and butoxyl groups-substituted alkynone derivatives. Their chemical structures have been fully characterized by 1H NMR, 13C NMR, IR, and HRMS spectra, providing satisfactory analysis results. Their photophysical properties are systematically studied and the effect of substitution groups on the emission maximum, emission efficiency, as well as AIE property are discussed, respectively. Their emission maxima are located at 511~565 nm with the fluorescence quantum yields of up to 31% in the aggregated states in THF/water mixtures with high water content. The fluorescence intensity of the unsubstituted TPE-containing alkynone derivative in THF/H2O with φw=90% water content is 157 times higher than that in THF solution. It is suggested that both electron-donating and electron-withdrawing substitution groups on the terminal phenyl ring decrease the emission efficiency of the aggregated state and the introduction of nitro group dramatically quenches the emission while redshifts the emission maximum. Most importantly, the alkynone groups in these compounds can selectively coordinate with Pd2+ among a large variety of metal ions, which quench the emission of the nanoaggregates and possess high sensitivity towards Pd2+, demon-strating the potential application as an efficient Pd2+ fluorescent sensor.

Cite this article

Huang Yuzhang , Lei Luoqi , Zheng Chao , Wei Bo , Zhao Zujin , Qin Anjun , Hu Rongrong , Tang Ben Zhong . Tetraphenylethene-Containing Alkynone Derivatives: Design and Synthesis, Aggregation-Induced Emission Characteristics, and the Selective Fluorescence Detection of Pd2+[J]. Acta Chimica Sinica, 2016 , 74(11) : 885 -892 . DOI: 10.6023/A16080435

References

[1] (a) Chen, H. C.; Ching, K. C.; Fang, M. H.; Ching, F. S.; Pi, T. C.; Chin, H. L. Adv. Funct. Mater. 2009, 19, 560.
(b) You, S.; Cai, Q.; Zheng, Y.; He, B.; Shen, J.; Yang, W.; Yin, M. ACS Appl. Mater. Interfaces 2014, 6, 16327.
[2] (a) Jenekhe, S. A.; Osaheni, J. A. Science 1994, 265, 765.
(b) Chen, C. T. Chem. Mater. 2004, 16, 4389.
[3] Hong, Y.; Lam, J. W. Y.; Tang, B. Z. Chem. Commun. 2009, 4332.
[4] Luo, J. D.; Xie, Z. L.; Lam, J. W. Y.; Cheng, L.; Chen, H. Y.; Qiu, C. F.; Kwok, H. S.; Zhan, X. W.; Liu, Y. Q.; Zhu, D. B.; Tang, B. Z. Chem. Commun. 2001, 1740.
[5] Mei, J.; Leung, N. L. C.; Kwok, R. T. K.; Lam, J. W. Y.; Tang, B. Z. Chem. Rev. 2015, 115, 11718.
[6] Li, S.; Langenegger, S. M.; Häner, R. Chem. Commun. 2013, 49, 5835.
[7] (a) Singh, A.; Lim, C. K.; Lee, Y. D.; Maeng, J. H.; Lee, S.; Koh, J.; Kim, S. ACS Appl. Mater. Interfaces 2013, 5, 8881.
(b) Xi, W.; Gong, Y.; Mei, B.; Zhang, X.; Zhang, Y.; Chen, B.; Wu, J.; Tian, Y.; Zhou, H. Sensors and Actuators B 2014, 205, 158.
[8] (a) Sun, J. B.; Zhang, G. H.; Jia, X. Y.; Xue, P. C.; Lu, R. Acta Chim. Sinica 2016, 74, 165. (孙静波, 张恭贺, 贾小宇, 薛鹏冲, 贾俊辉, 卢然, 化学学报, 2016, 74, 165.)
(b) Jackson, S. L.; Rananaware, A.; Rix, C.; Bhosale, S. V.; Latham, K. Cryst. Growth Des. 2016, 16, 3067.
[9] Aldred, M. P.; Li, C.; Zhang, G. F.; Gong, W. L.; Li, A. D.; Dai, Y.; Ma, D.; Zhu, M. Q. J. Mater. Chem. 2012, 22, 7515.
[10] (a) Grabowski, Z. R.; Rotkiewicz, K.; Rettig, W. Chem. Rev. 2003, 103, 3899.
(b) Wu, P. T.; Kim, F. S.; Jenekhe, S. A. Chem. Mater. 2011, 23, 4618.
(c) Ahmed, E.; Subramaniyan, S.; Kim, F. S.; Xin, H.; Jenekhe, S. A. Macromolecules 2011, 44, 7207.
(d) Ahmed, E.; Ren, G.; Kim, F. S.; Hollenbeck, E. C.; Jenekhe, S. A. Chem. Mater. 2011, 23, 4563.
[11] (a) Kim, E.; Park, S. B. Chem. Asian J. 2009, 4, 1646.
(b) Tao, S.; Li, L.; Yu, J.; Jiang, Y.; Zhou, Y.; Lee, C. S.; Lee, S. T.; Zhang, X.; Kwon, O. Chem. Mater. 2009, 21, 1284.
(c) Xia, Z. Q.; Shao, A. D.; Li, Q.; Zhu, S. Q.; Zhu, W. H. Acta Chim. Sinica 2016, 74, 351. (夏志清, 邵安东, 李强, 朱世琴, 朱为宏, 化学学报, 2016, 74, 351.)
[12] (a) Zhao, Q.; Zhang, X. A.; Wei, Q.; Wang, J.; Shen, X. Y.; Qin, A.; Sun, J. Z.; Tang, B. Z. Chem. Commun. 2012, 48, 11671.
(b) Yu, W.; Wu, Y.; Chen, J.; Duan, X.; Jiang, X. F.; Qiu, X.; Li, Y. RSC Adv. 2016, 6, 51257.
[13] (a) Cho, D. G.; Sessler, J. L. Chem. Soc. Rev. 2009, 38, 1647.
(b) Kielhorn, J.; Melber, C.; Keller, D.; Mangelsdorf, I. Int. J. Hyg. Environ. Health 2002, 205, 417.
[14] (a) Kim, J. S.; Quang, D. T. Chem. Rev. 2007, 107, 3780.
(b) Yang, Y.; Zhao, Q.; Feng, W.; Li, F. Chem. Rev. 2013, 113, 192.
[15] (a) Chen, X.; Li, H.; Jin, L.; Yin, B. Tetrahedron Lett. 2014, 55, 2537.
(b) Cui, H.; Chen, H.; Pan, Y.; Lin, W. A. Sensors and Actuators B 2015, 219, 232.
[16] Wang, Z.; Lu, X. Chem. Commun. 1996, 535.
[17] Yuan, W. Z.; Yu, Z. Q.; Tang, Y.; Lam, J. W.; Xie, N.; Lu, P.; Chen, E. Q.; Tang, B. Z. Macromolecules 2011, 44, 9618.
[18] Liu, J.; Zhong, Y.; Lu, P.; Hong, Y.; Hong, Y.; Lam, J. W.; Faisal, M.; Yu, Y.; Wong, K. S.; Tang, B. Z. Polym. Chem. 2010, 1, 426.

Outlines

/