Effect of Intermolecular Excited-state Interaction on Vibrationally Resolved Optical Spectra in Organic Molecular Aggregates
Received date: 2016-08-30
Online published: 2016-11-24
Supported by
Project supported by the Ministry of Science and Technology of China through the 973 program (Grants 2013CB834703, 2015CB65502 and 2013CB933503), the National Natural Science Foundation of China (Grants 21473214, 21290191 and 91233105), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant XDB12020200).
The optical spectra are effective means to reveal the molecular interactions and the luminescent mechanism of the organic molecules in aggregates. Herein, we systematically investigate the crystalline state vibrationally resolved absorption and emission spectra for a series of AIEgens and non-AIEgens by considering intermolecular excited state interaction by using Frenkel-exciton model coupled with quantum mechanics and molecular mechanics (QM/MM) calculations. It is found that the competition between the intramolecular vibronic coupling (λ) and the intermolecular exciton coupling (J) governs the crystalline aggregate spectral characters. At room temperature, when J/λ value is larger than a critical value (ca. 0.17), the exciton coupling would have a large effect on the optical spectra. For face-to-face H-aggregates, only when both intermolecular electrostatic and excitonic couplings are considered, can one obtain calculated vibrationally resolved spectra and well reproduce the experimental results, namely, remarkable blue-shift in absorption but much less red-shift in emission when compared with the gas-phase. The optical spectra of the AIE-active aggregates are determined by the intramolecular vibronic coupling because the ratio J/λ is less than the critical value.
Li Wenqiang , Peng Qian , Xie Yujun , Zhang Tian , Shuai Zhigang . Effect of Intermolecular Excited-state Interaction on Vibrationally Resolved Optical Spectra in Organic Molecular Aggregates[J]. Acta Chimica Sinica, 2016 , 74(11) : 902 -909 . DOI: 10.6023/A16080452
[1] (a) Tang, C. W.; VanSlyke, S. A. Appl. Phys. Lett. 1987, 51, 913;
(b) Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.; Friend, R. H.; Burns, P. L.; Holmes, A. B. Nature 1990, 347, 539;
(c) Malissa, H.; Kavand, M.; Waters, D. P.; van Schooten, K. J.; Burn, P. L.; Vardeny, Z. V.; Saam, B.; Lupton, J. M.; Boehme, C. Science 2014, 345, 1487;
(d) Lee, J.; Chen, H.-F.; Batagoda, T.; Coburn, C.; Djurovich, P. I.; Thompson, M. E.; Forrest, S. R. Nat. Mater. 2016, 15, 92.
[2] (a) Schäfer, F. P.; Schmidt, W.; Volze, J. Appl. Phys. Lett. 1966, 9, 306;
(b) Morales-Vidal, M.; Boj, P. G.; Villalvilla, J. M.; Quintana, J. A.; Yan, Q.; Lin, N.-T.; Zhu, X.; Ruangsupapichat, N.; Casado, J.; Tsuji, H.; Nakamura, E.; Diaz-Garcia, M. A. Nat. Commun. 2015, 6, 8458.
[3] (a) Horowitz, G. Adv. Mater. 1998, 10, 365;
(b) Liu, J.; Zhang, H.; Dong, H.; Meng, L.; Jiang, L.; Jiang, L.; Wang, Y.; Yu, J.; Sun, Y.; Hu, W.; Heeger, A. J. Nat. Commun. 2015, 6, 10032.
[4] (a) Gaylord, B. S.; Heeger, A. J.; Bazan, G. C. PNAS 2002, 99, 10954;
(b) Rana, S.; Elci, S. G.; Mout, R.; Singla, A. K.; Yazdani, M.; Bender, M.; Bajaj, A.; Saha, K.; Bunz, U. H. F.; Jirik, F. R.; Rotello, V. M. J. Am. Chem. Soc. 2016, 138, 4522.
[5] (a) Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J. Science 1995, 270, 1789;
(b) Page, Z. A.; Liu, Y.; Duzhko, V. V.; Russell, T. P.; Emrick, T. Science 2014, 346, 441;
(c) Holliday, S.; Ashraf, R. S.; Wadsworth, A.; Baran, D.; Yousaf, S. A.; Nielsen, C. B.; Tan, C. H.; Dimitrov, S. D.; Shang, Z. R.; Gasparini, N.; Alamoudi, M.; Laquai, F.; Brabec, C. J.; Salleo, A.; Durrant, J. R.; McCulloch, I. Nat. Commun. 2016, 7, 11;
(d) Rong, Y.; Mei, A.; Liu, L.; Li, X.; Han, H. Acta Chim. Sinica 2015, 73, 237. (荣耀光, 梅安意, 刘林峰, 李雄, 韩宏伟, 化学学报, 2015, 73, 237.)
(e) Fu, Y.-T.; Yi, Y.; Coropceanu, V.; Risko, C.; Aziz, S. G.; Brédas, J.-L. Sci. China Chem. 2014, 57, 1330.
[6] Mei, J.; Leung, N. L. C.; Kwok, R. T. K.; Lam, J. W. Y.; Tang, B. Z. Chem. Rev. 2015, 115, 11718.
[7] Valeur, B.; Berberan-Santos, M. N. Molecular Fluorescence, Wiley-VCH, Weinheim, 2012, pp. 141~179.
[8] (a) Kasha, M. Radiat. Res. 1963, 20, 55;
(b) Kasha, M.; Rawls, H.; El-Bayoumi, M. A. Pure Appl. Chem. 1965, 11, 371.
[9] (a) Spano, F. C. Acc. Chem. Res. 2010, 43, 429;
(b) Spano, F. C. J. Chem. Phys. 2003, 118, 981;
(c) Spano, F. C. Phys. Rev. B 2005, 71, 094110;
(d) Spano, F. C. Annu. Rev. Phys. Chem. 2006, 57, 217.
[10] (a) Wykes, M.; Parambil, R.; Beljonne, D.; Gierschner, J. J. Chem. Phys. 2015, 143, 114116;
(b) Gierschner, J.; Ehni, M.; Egelhaaf, H.-J.; Milián Medina, B.; Beljonne, D.; Benmansour, H.; Bazan, G. C. J. Chem. Phys. 2005, 123, 144914.
[11] Gao, F.; Liang, W.; Zhao, Y. Sci. China Chem. 2010, 53, 297.
[12] (a) Wu, Q.; Zhang, T.; Peng, Q.; Wang, D.; Shuai, Z. Phys. Chem. Chem. Phys. 2014, 16, 5545.
(b) Wu, Q.; Peng, Q.; Zhang, T.; Shuai, Z. Sci. China Chem. 2013, 43, 1078.
[13] Kasha, M. Discuss. Faraday Soc. 1950, 9, 14.
[14] Niu, Y.; Peng, Q.; Deng, C.; Gao, X.; Shuai, Z. J. Phys. Chem. A 2010, 114, 7817;
[15] (a) Zhang, T.; Peng, Q.; Quan, C.; Nie, H.; Niu, Y.; Xie, Y.; Zhao, Z.; Tang, B. Z.; Shuai, Z. Chem. Sci. 2016, 7, 5573;
(b) Wu, C. C.; Korovyanko, O. J.; Delong, M. C.; Vardeny, Z. V.; Ferraris, J. P. Synth. Met. 2003, 139, 735.
[16] (a) Yassar, A.; Horowitz, G.; Valat, P.; Wintgens, V.; Hmyene, M.; Deloffre, F.; Srivastava, P.; Lang, P.; Garnier, F. J. Phys. Chem. 1995, 99, 9155;
(b) Stradomska, A.; Petelenz, P. J. Chem. Phys. 2009, 130, 094705.
[17] (a) Mason, R. Acta Crystallogr. 1964, 17, 547;
(b) Pope, M.; Kallmann, H. P.; Magnante, P. J. Chem. Phys. 1963, 38, 2042;
(c) Li, H.; Duan, L.; Zhang, D.; Dong, G.; Wang, L.; Qiu, Y. Sci. China Ser. B:Chem. 2009, 52, 181.
[18] (a) Gao, F.; Liang, W. Z.; Zhao, Y. J. Phys. Chem. A 2009, 113, 12847;
(b) Mitrofanov, O.; Kloc, C.; Siegrist, T.; Lang, D. V.; So, W.-Y.; Ramirez, A. P. Appl. Phys. Lett. 2007, 91, 212106.
[19] (a) Wu, Q.; Deng, C.; Peng, Q.; Niu, Y.; Shuai, Z. J. Comput. Chem. 2012, 33, 1862;
(b) Qin, A.; Lam, J. W. Y.; Mahtab, F.; Jim, C. K. W.; Tang, L.; Sun, J.; Sung, H. H. Y.; Williams, I. D.; Tang, B. Z. Appl. Phys. Lett. 2009, 94, 253308.
[20] Dong, Y.; Lam, J. W. Y.; Qin, A.; Sun, J.; Liu, J.; Li, Z.; Sun, J.; Sung, H. H. Y.; Williams, I. D.; Kwok, H. S.; Tang, B. Z. Chem. Commun. 2007, 31, 3255.
[21] Chen, J.; Law, C. C. W.; Lam, J. W. Y.; Dong, Y.; Lo, S. M. F.; Williams, I. D.; Zhu, D.; Tang, B. Z. Chem. Mater. 2003, 15, 1535.
[22] (a) Xie, Y.; Zhang, T.; Li, Z.; Peng, Q.; Yi, Y.; Shuai, Z. Chem. Asian J. 2015, 10, 2154;
(b) Zhan, X.; Haldi, A.; Risko, C.; Chan, C. K.; Zhao, W.; Timofeeva, T. V.; Korlyukov, A.; Antipin, M. Y.; Montgomery, S.; Thompson, E.; An, Z.; Domercq, B.; Barlow, S.; Kahn, A.; Kippelen, B.; Bredas, J.-L.; Marder, S. R. J. Mater. Chem. 2008, 18, 3157.
[23] Zhao, Z.; Liu, D.; Mahtab, F.; Xin, L.; Shen, Z.; Yu, Y.; Chan, C. Y. K.; Lu, P.; Lam, J. W. Y.; Sung, H. H. Y.; Williams, I. D.; Yang, B.; Ma, Y.; Tang, B. Z. Chem.-Eur. J. 2011, 17, 5998.
[24] (a) Zhang, T.; Jiang, Y.; Niu, Y.; Wang, D.; Peng, Q.; Shuai, Z. J. Phys. Chem. A 2014, 118, 9094.
(b) Zhan, X. W.; Risko, C.; Amy, F.; Chan, C.; Zhao, W.; Barlow, S.; Kahn, A.; Bredas, J.-L.; Marder, S. R. J. Am. Chem. Soc. 2005, 127, 9021.
[25] Hsu, C.-P.; You, Z.-Q.; Chen, H.-C. J. Phys. Chem. C 2008, 112, 1204.
[26] (a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648;
(b) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.
[27] Wang, J.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case, D. A. J. Comput. Chem. 2004, 25, 1157.
[28] Sherwood, P.; de Vries, A. H.; Guest, M. F.; Schreckenbach, G.; Catlow, C. R. A.; French, S. A.; Sokol, A. A.; Bromley, S. T.; Thiel, W.; Turner, A. J.; Billeter, S.; Terstegen, F.; Thiel, S.; Kendrick, J.; Rogers, S. C.; Casci, J.; Watson, M.; King, F.; Karlsen, E.; Sjøvoll, M.; Fahmi, A.; Schäfer, A.; Lennartz, C. J. Mol. Struct. THEOCHEM 2003, 632, 1.
[29] (a) TURBOMOLE V6.52013, University of Karlsruhe and of the Forschungszentrum Karlsruhe GmbH, 1989-2007; TURBOLE GmbH, since 2007(accessed May 23, 2013);
(b) Ahlrichs, R.; Bär, M.; Häser, M.; Horn, H.; Kölmel, C. Chem. Phys. Lett. 1989, 162, 165.
[30] Smith, W.; Forester, T. R. J. Mol. Graphics 1996, 14, 136.
[31] Yanai, T.; Tew, D. P.; Handy, N. C. Chem. Phys. Lett. 2004, 393, 51.
[32] Shuai, Z.; Peng, Q.; Niu, Y.; Geng, H.; MOMAP, Revision 0.3.001 ed.; MOMAP:a free and open-source molecular materials property prediction package; avaliable online:http://www.shuaigroup.net, Beijing, China, 2016.
[33] Valiev, M.; Bylaska, E. J.; Govind, N.; Kowalski, K.; Straatsma, T. P.; Van Dam, H. J. J.; Wang, D.; Nieplocha, J.; Apra, E.; Windus, T. L.; de Jong, W. A. Comput. Phys. Commun. 2010, 181, 1477.
[34] Gierschner, J.; Mack, H. G.; Egelhaaf, H. J.; Schweizer, S.; Doser, B.; Oelkrug, D. Synth. Met. 2003, 138, 311.
/
| 〈 |
|
〉 |