Benzothiadiazole Conjugated Metalorganic Framework for Organic Aerobic Oxidation Reactions under Visible Light
Received date: 2016-09-17
Revised date: 2016-11-07
Online published: 2016-11-24
Supported by
Project supported by the National Natural Science Foundation of China (Nos. 21302072, 21302218), TAPP and PAPD of Jiangsu Higher Education Institutions.
In the past several years, visible light induced organic transformations via photoredox catalysis have attracted increasing attention from chemists, owing to their mild, environmentally benign and low cost characteristics. Photoredox catalysts including noble metal complexes as well as some organic dyes are often used to promote the transformations under visible light irradiation. However, most of the reactions were conducted in homogeneous system, which makes it difficult to recycle the catalysts for reuse. From a sustainable viewpoint, an ideal photocatalyst should be easily recoverable, reusable and free of precious metals. To this end, photoactive metal-organic frameworks (MOFs) demonstrate unique advantageous features working as novel heterogeneous photocatalytic systems, yet their utilization toward organic transformations promoted by visible light has been limited. Herein we designed and synthesized a benzothiadiazole functionalized TPDC ligand H21 (TPDC=terphenyl-4,4''-dicarboxylic acid). Briefly, a Suzuki reaction of 4,7-dibromo-2,1,3-benzothiadiazole with 4-(methoxycarbonyl)phenylboronic acid yielded methyl ester precursor, which was hydrolysed by KOH to get the ligand H21 in a high yield. Dimethyl-substituted TPDC H22, on account of its better solubility, was synthesized to replace the original TPDC for preparation of MOF UiO-68 framework. Due to the same length of the two ligands, the mix-and-match synthetic strategy was utilized to construct the benzothiadiazole functionalized UiO-68 topological framework (i.e. MOF UiO-68-S). UiO-68-S was synthesized by heating the mixture of ZrCl4 and a combination of ligands H21 and H22 (1:1 molar ratio) in N,N'-dimethylformamide (DMF) using HAc as an additive at 100℃ for 2 days. Powder X-ray diffraction (XRD) was em-ployed to confirm its crystalline nature and isostructural with the parent UiO-68 framework. Nitrogen sorption experiment at 77 K revealed a typical type I reversible isotherm with Brunauer-Emmett-Teller (BET) surface area up to 1135 m2·g-1, indicating its high porosity. Moreover, the MOF can serve as a highly active photocatalyst for visible light promoted aerobic oxidation reactions, including the selective oxygenation of sulfides and oxidative hydroxylation of arylboronic acids. In addition, UiO-68-S can be recycled at least 5 times without significant loss of catalytic activity and its framework is maintained following the catalytic reaction.
Zhang Wen-Qiang , Li Qiu-Yan , Yang Xinyu , Ma Zheng , Wang Huanhuan , Wang Xiao-Jun . Benzothiadiazole Conjugated Metalorganic Framework for Organic Aerobic Oxidation Reactions under Visible Light[J]. Acta Chimica Sinica, 2017 , 75(1) : 80 -85 . DOI: 10.6023/A16090496
[1] Shaw, M. H.; Twilton, J.; MacMillan, D. W. C. J. Org. Chem. 2016, 81, 6898.
[2] Nicewicz, D. A.; MacMillan, D. W. C. Science 2008, 322, 77.
[3] Xuan, J.; Xiao, W.-J. Angew. Chem., Int. Ed. 2012, 51, 6828.
[4] Shi, L.; Xia, W. Chem. Soc. Rev. 2012, 41, 7687.
[5] Wang, C.; Lu, Z. Org. Chem. Front. 2015, 2, 179.
[6] Zhang, G.; Bian, C.; Lei, A. Chin. J. Catal. 2015, 36, 1428. (张国亭, 边长亮, 雷爱文, 催化学报, 2015, 36, 1428.)
[7] Guan, B. C.; Xu, X. L.; Wang, H.; Li, X. N. Chin. J. Org. Chem. 2016, 36, 1564. (关保川, 许孝良, 王红, 李小年, 有机化学, 2016, 36, 1564.)
[8] Tan, F.; Xiao, W. J. Acta Chim. Sinica 2015, 73, 85. (谭芬, 肖文精, 化学学报, 2015, 73, 85.)
[9] Zheng, Y.-W.; Chen, B.; Ye, P.; Feng, K.; Wang, W.; Meng, Q.-Y.; Wu, L.-Z.; Tung, C.-H. J. Am. Chem. Soc. 2016, 138, 10080.
[10] Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322.
[11] Nicewicz, D. A.; Nguyen, T. M. ACS Catal. 2014, 4, 355.
[12] Meng, Q.-Y.; Zhong, J.-J.; Liu, Q.; Gao, X.-W.; Zhang, H.-H.; Lei, T.; Li, Z.-J.; Feng, K.; Chen, B.; Tung, C.-H.; Wu, L.-Z. J. Am. Chem. Soc. 2013, 135, 19052.
[13] Lei, T.; Liu, W.-Q.; Li, J.; Huang, M.-Y.; Yang, B.; Meng, Q.-Y.; Chen, B.; Tung, C.-H.; Wu, L.-Z. Org. Lett. 2016, 18, 2479.
[14] Sun, X. Y.; Yu, S. Y. Chin. J. Org. Chem. 2016, 36, 239. (孙晓阳, 俞寿云, 有机化学, 2016, 36, 239.)
[15] Xie, Z.; Wang, C.; deKrafft, K. E.; Lin, W. J. Am. Chem. Soc. 2011, 133, 2056.
[16] Jana, A.; Mondal, J.; Borah, P.; Mondal, S.; Bhaumik, A.; Zhao, Y. Chem. Commun. 2015, 51, 10746.
[17] Yu, X.; Cohen, S. M. Chem. Commun. 2015, 51, 9880.
[18] Rueping, M.; Zoller, J.; Fabry, D. C.; Poscharny, K.; Koenigs, R. M.; Weirich, T. E.; Mayer, J. Chem. Eur. J. 2012, 18, 3478.
[19] Wang, J.; Ma, J.; Li, X.; Li, Y.; Zhang, G.; Zhang, F.; Fan, X. Chem. Commun. 2014, 50, 14237.
[20] Chen, J.; Cen, J.; Xu, X.; Li, X. Catal. Sci. Technol. 2016, 6, 349.
[21] Zhou, H.-C.; Long, J. R.; Yaghi, O. M. Chem. Rev. 2012, 112, 673.
[22] Cui, Y.; Li, B.; He, H.; Zhou, W.; Chen, B.; Qian, G. Acc. Chem. Res. 2016, 49, 483.
[23] Zhao, M.; Ou, S.; Wu, C.-D. Acc. Chem. Res. 2014, 47, 1199.
[24] Guo, R.; Bai, J.; Zhang, H.; Xie, Y.; Li, J.-R. Prog. Chem. 2016, 28, 232. (郭瑞梅, 白金泉, 张恒, 谢亚勃, 李建荣, 化学进展, 2016, 28, 232.)
[25] Huang, G.; Chen, Y. Z.; Jiang, H. L. Acta Chim. Sinica 2016, 74, 113. (黄刚, 陈玉贞, 江海龙, 化学学报, 2016, 74, 113.)
[26] Li, P.-Z.; Wang, X.-J.; Tan, S. Y.; Ang, C. Y.; Chen, H.; Liu, J.; Zou, R.; Zhao, Y. Angew. Chem. Int. Ed. 2015, 54, 12748.
[27] Li, P.-Z.; Wang, X.-J.; Liu, J.; Lim, J. S.; Zou, R.; Zhao, Y. J. Am. Chem. Soc. 2016, 138, 2142.
[28] Wang, C.; Xie, Z.; deKrafft, K. E.; Lin, W. J. Am. Chem. Soc. 2011, 133, 13445.
[29] Toyao, T.; Ueno, N.; Miyahara, K.; Matsui, Y.; Kim, T.-H.; Horiuchi, Y.; Ikeda, H.; Matsuoka, M. Chem. Commun. 2015, 51, 16103.
[30] Johnson, J. A.; Luo, J.; Zhang, X.; Chen, Y.-S.; Morton, M. D.; Echeverría, E.; Torres, F. E.; Zhang, J. ACS Catal. 2015, 5, 5283.
[31] Johnson, J. A.; Zhang, X.; Reeson, T. C.; Chen, Y.-S.; Zhang, J. J. Am. Chem. Soc. 2014, 136, 15881.
[32] Zhang, W.-Q.; Li, Q.-Y.; Zhang, Q.; Lu, Y.; Lu, H.; Wang, W.; Zhao, X.; Wang, X.-J. Inorg. Chem. 2016, 55, 1005.
[33] Li, Q.-Y.; Ma, Z.; Zhang, W.-Q.; Xu, J.-L.; Wei, W.; Lu, H.; Zhao, X.; Wang, X.-J. Chem. Commun. 2016, 52, 11284.
[34] Wei, N.; Zhang, Y. R.; Han, Z. B. CrystEngComm 2013, 15, 8883.
[35] Sk, M.; Biswas, S. CrystEngComm 2016, 18, 3104.
[36] Song, C.; Ling, Y.; Jin, L.; Zhang, M.; Chen, D.-L.; He, Y. Dalton Trans. 2016, 45, 190.
[37] Liras, M.; Iglesias, M.; Sánchez, F. Macromolecules 2016, 49, 1666.
[38] Lang, X.; Zhao, J.; Chen, X. Angew. Chem. Int. Ed. 2016, 55, 4697.
[39] Wang, H.; Jiang, S. L.; Chen, S. C.; Li, D. D.; Zhang, X. D.; Shao, W.; Sun, X. S.; Xie, J. F.; Zhao, Z.; Zhang, Q.; Tian, Y. P.; Xie, Y. Adv. Mater. 2016, 28, 6940.
[40] Luo, J.; Zhang, X.; Zhang, J. ACS Catal. 2015, 5, 2250.
[41] Zou, Y.-Q.; Chen, J.-R.; Liu, X.-P.; Lu, L.-Q.; Davis, R. L.; Jørgensen, K. A.; Xiao, W.-J. Angew. Chem., Int. Ed. 2012, 51, 784.
/
〈 |
|
〉 |