Decarboxylative 1,6-Conjugate Addition of α-Keto Acids with para-Quinone Methides Enabled by Photoredox Catalysis
Received date: 2016-09-15
Revised date: 2016-11-27
Online published: 2016-12-05
Supported by
Project supported by the National Natural Science Foundation of China (No. 21672121).
α-Arylated and α,α'-diarylated carbonyls are an important class of building blocks and widely found in biologically active natural and unnatural molecules. The most popular approach to access α-arylated and α,α'-diarylated carbonyls involves transition-metal-catalyzed cross-coupling reactions and metal-free coupling reactions, which always request harsh conditions or high catalytic loading. Visible-light photoredox catalysis, a novel and green catalytic strategy, has recently received increasing attention from chemists and been widely applied to organic synthesis in the past years. Inspired by the recent process of the visible light photocatalytic generation and exploration of α-keto acids as the precursor for acyl radical in decarboxylative cou-pling reactions and 1,4-Michael addition reactions, we found that, however, expand their utilization in more complex systems, such as 1,6-conjugate addition with electron deficient olefins, remains underdeveloped, particularly due to the difficult to design the appropriate substrate, and the harsh conditions often required for metal-catalyzed redox neutral decarboxylation. Here, we report a photoredox catalytic C-C bond formation reaction that enabled by visible-light. The versatility of this protocol has been portrayed by using a wide range of stable and easily accessible aromatic α-keto acids as well as p-QMs. This synthetic strategy also offers access to 24 kinds of different α-keto-α,α'-diarylated ketones in moderate to excellent yields under mild conditions. A representative procedure for the reaction is as follows:2-oxo-2-phenylacetic acid 1a (0.10 mmol), the p-QM (2,6-di-tert-butyl-4-(4-methoxybenzylidene) cyclohexa-2,5-dien-1-one) 2a (0.12 mmol), photocatalyst Ir[dF(CF3)PPy]2(dtbbpy)PF6 (0.001 mmol) and K2HPO4 (0.12 mmol) were dissolved in DCM (1 mL). Then, the resulting mixture was degassed and refilled with N2 via ‘freeze-pump-thaw’ procedure (3 times). After that, the solution was stirred at a distance of ca. 5 cm from a 36 W blue LEDs at room temperature for about 12 h with TLC monitoring. Upon completion of the reaction, the crude product was purified by flash chromatography on silica gel (hexane/ethyl acetate) to give the desired product 3.
Wu Zijun , Wang Jian . Decarboxylative 1,6-Conjugate Addition of α-Keto Acids with para-Quinone Methides Enabled by Photoredox Catalysis[J]. Acta Chimica Sinica, 2017 , 75(1) : 74 -79 . DOI: 10.6023/A16090492
[1] (a) Muratake, H.; Hayakawa, A.; Natsume, M. Tetrahedron Lett. 1997, 38, 7577;
(b) Lu, M. C.; Wung, W. E.; Shih, L. B.; Callejas, S.; Gearien, J. E.; Thompson, E. B. J. Med. Chem. 1987, 30, 273;
(c) Wang, J.-Q.; Miller, M. A.; Mock, B. H.; Lopshire, J. C.; Groh, W. J.; Zipes, D. P.; Hutchins, G. D.; Zheng, Q.-H. Bioorg. Med. Chem. Lett. 2005, 15, 4510.
[2] (a) Palucki, M.; Buchwald, S. L. J. Am. Chem. Soc. 1997, 119, 1108;
(b) Hamann, B. C.; Hartwig, J. F. J. Am. Chem. Soc. 1997, 119, 12382;
(c) Lloyd-Jones, G. C. Angew. Chem., Int. Ed. 2002, 41, 953;
(d) Culkin, D. A.; Hartwig, J. F. Acc. Chem. Res. 2003, 36, 234;
(e) Burtoloso, A. C. B. Synlett 2009, 2009, 320;
(f) Bellina, F.; Rossi, R. Chem. Rev. 2010, 110, 1082;
(g) Johansson, C. C. C.; Colacot, T. J. Angew. Chem., Int. Ed. 2010, 49, 676;
(h) Danoun, G.; Tlili, A.; Monnier, F.; Taillefer, M. Angew. Chem., Int. Ed. 2012, 51, 12815.
[3] (a) Baran, P. S.; Richter, J. M. J. Am. Chem. Soc. 2004, 126, 7450;
(b) Tambar, U. K.; Stoltz, B. M. J. Am. Chem. Soc. 2005, 127, 5340;
(c) Baran, P. S.; Richter, J. M.; Lin, D. W. Angew. Chem., Int. Ed. 2005, 44, 609;
(d) Xia, J.; Brown, L. E.; Konopelski, J. P. J. Org. Chem. 2007, 72, 6885;
(e) Mohanan, K.; Coquerel, Y.; Rodriguez, J. Org. Lett. 2012, 14, 4686;
(f) Huang, X.; Patil, M.; Farès, C.; Thiel, W.; Maulide, N. J. Am. Chem. Soc. 2013, 135, 7312;
(g) More, N. Y.; Jeganmohan, M. Org. Lett. 2014, 16, 804.
[4] Ramanjaneyulu, B. T.; Mahesh, S.; Anand, R. V. Org. Lett. 2015, 17, 3952.
[5] (a) Hartwig, J. F. J. Am. Chem. Soc. 2016, 138, 2;
(b) Xiao, K. J.; Chu, L.; Yu, J.-Q. Angew. Chem., Int. Ed. 2016, 55, 2856;
(c) Cheng, G.; Li, T.; Yu, J.-Q. J. Am. Chem. Soc. 2015, 137, 10950;
(d) Hartwig, J. F. Chem. Soc. Rev. 2011, 40, 1992;
(e) Della Ca', N.; Fontana, M.; Motti, E.; Catellani, M. Acc. Chem. Res. 2016, 49, 1389;
(f) Ackermann, L. Acc. Chem. Res. 2014, 47, 281;
(g) Neufeldt, S. R.; Sanford, M. S. Acc. Chem. Res. 2012, 45, 788;
(h) Yeung, C. S.; Dong, V. M. Chem. Rev. 2011, 111, 1215;
(i) Colby, D. A.; Bergman, R. G.; Ellman, J. A. Chem. Rev. 2010, 110, 624.
[6] (a) Johnson, R. G.; Ingham, K. Chem. Rev. 1956, 56, 219.
(b) Rice, F. A. J. Am. Chem. Soc. 1956, 78, 3173;
(c) Lampman, G. M.; Aumiller, J. C. Org. Synth. 1971, 51, 106;
(d) McKillop, A.; Bromley, D. Tetrahedron Lett. 1969, 10, 1623;
(e) Concepciýn, J. I.; Francisco, C. G.; Freire, R.; Hernndez, R.; Salazar, A.; Surez, E. J. Org. Chem. 1986, 51, 402;
(f) Das, J. P.; Roy, S. J. Org. Chem. 2002, 67, 7861;
(g) Wang, Z.; Zhu, L.; Yin, F.; Su, Z.; Li, Z.; Li, C. J. Am. Chem. Soc. 2012, 134, 4258;
(h) Barton, D. H. R.; Serebryakov, E. P. Proc. Chem. Soc. 1962, 309;
(i) Barton, D. H. R.; Dowlatshahi, H. A.; Motherwell, W. B.; Villemin, D. J. Chem. Soc. Chem. Commun. 1980, 732.
[7] (a) Xuan, J.; Zhang, Z.-G.; Xiao, W.-J. Angew. Chem., Int. Ed. 2015, 54, 15632;
(b) Zhou, Q.-Q.; Guo, W.; Ding, W.; Wu, X.; Chen, X.; Lu, L.-Q.; Xiao, W.-J. Angew. Chem., Int. Ed. 2015, 54, 11196;
(c) Cuthbertson, J. D.; MacMillan, D. W. C. Nature 2015, 519, 74;
(d) Du, J.; Skubi, K. L.; Schultz, D. M.; Yoon, T. P. Science 2014, 344, 392;
(e) Zuo, Z.-W.; Ahneman, D. T.; Chu, L.-L.; Terrett, J. A.; Doyle, A. G.; MacMillan, D. W. C. Science 2014, 345, 437;
(f) Tellis, J. C.; Primer, D. N.; Molander, G. A. Science 2014, 345, 433;
(g) Hari, D. P.; König, B. Chem. Commun. 2014, 50, 6688;
(h) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322;
(i) Naraya-nam, J. M. R.; Stephenson, C. R. J. Chem. Soc. Rev. 2011, 40, 102;
(j) Nicewicz, D. A.; MacMillan, D. W. C. Science 2008, 322, 77;
(k) Zuo, X.; Wu, W.; Su, W. Acta Chim. Sinica 2015, 73, 1298. (左璇, 吴文亮, 苏伟平, 化学学报, 2015, 73, 1298);
(l) Tan, F.; Xiao, W.-J. Acta Chim. Sinica 2015, 73, 85. (谭芬, 肖文精, 化学学报, 2015, 73, 85.)
[8] Liu, J.; Liu, Q.; Yi, H.; Qin, C.; Bai, R.; Qi, X.; Lan, Y.; Lei, A. Angew. Chem., Int. Ed. 2014, 53, 502.
[9] (a) Huang, H.; Zhang, G.; Chen, Y. Angew. Chem., Int. Ed. 2015, 54, 7872.
(b) Tan, H.; Li, H.; Ji, W.; Wang, L. Angew. Chem., Int. Ed. 2015, 54, 8374;
(c) Zhou, Q.-Q.; Guo, W.; Ding, W.; Wu, X.; Chen, X.; Lu, L.-Q.; Xiao, W.-J. Angew. Chem., Int. Ed. 2015, 54, 11196.
[10] Chu, L.; Lipshultz, J. M.; Macmillan, D. W. C. Angew. Chem., Int. Ed. 2015, 54, 7929.
[11] Cheng, W.-M.; Shang, R.; Yu, H.-Z.; Fu, Y. Chem. Eur. J. 2015, 21, 13191.
[12] Xu, N.; Li, P.; Xie, Z.; Wang, L. Chem. Eur. J. 2016, 22, 2236.
[13] Wang, G.-Z.; Shang, R.; Cheng, W.-M.; Fu, Y. Org. Lett. 2015, 17, 4830.
[14] For reviews on the chemistry of p-QMs, see:(a) Turner, A. B. Q. Rev. Chem. Soc. 1964, 18, 347;
(b) Peter, M. G. Angew. Chem., Int. Ed. 1989, 28, 555;
(c) Toteva, M. M.; Richard, J. P. Adv. Phys. Org. Chem. 2011, 45, 39.
[15] Chatgilialoglu, C.; Crich, D.; Komatsu, M.; Ryu, I. Chem. Rev. 1999, 99, 1991.
/
〈 |
|
〉 |