Synthesis of Sn Nanoparticles/Graphene Nanosheet Hybrid Electrode Material with Three-Dimensional Conducting Network for Magnesium Storage
Received date: 2016-10-13
Revised date: 2016-12-19
Online published: 2016-12-20
Supported by
Project supported by the National Natural Science Foundation of China (Grant Nos. 51225204, 21303222, and 21127901) and the "Strategic Priority Research Program" of the Chinese Academy of Sciences (Grant No. XDA09010100).
Rechargeable magnesium (Mg) batteries have attracted research attention as one promising alternative for energy storage because of abundant raw materials. However, the strong electrostatic interaction between bivalent Mg-ions and host lattices often cause sluggish solid state diffusion of Mg-ion within the local crystal structure and consequently prevent reversible insertion/extraction of Mg-ion. Thus much more effort has been paid to develop suitable electrode materials with Mg-ion storage capability. This paper reports the synthesis of Sn nanoparticles/reduced-graphene-oxide nanosheet hybrid nanocomposite (Sn/rGO), by simple hydrothermal method and subsequent thermal treatment. Transmission electron microscopy (TEM) clearly shows that in the as-synthesized Sn/rGO powder Sn nanoparticles are well crystallized, and X-ray diffraction (XRD) pattern was consistent well with tetragonal Sn. Thermogravimetric analysis (TG) suggested that the mass percentage of Sn is ca. 82.3 wt% in the Sn/rGO nanocomposite, very close to the design ratio of ca. 83.4 wt%. As Mg-ion battery anode, the Sn/rGO electrode material exhibit a high initial discharge specific capacity (545.4 mAh·g-1 at 15 mA·g-1), good reversible ability and rate performance. The impressive electrochemical property could be attributed to the unique structure of Sn/rGO, in which the three-dimensional (3D) conducting network of rGO can effectively prevent the aggregation of Sn nanoparticles and alleviate the serious volume variation of Sn during repeated discharging/charging process, as well as facilitate the fast access of electrons and Mg-ion to improve kinetics for Mg-ion insertion/extraction. Ex situ XRD and SEM characterization were performed to investigate the electrochemical evolution of Sn/rGO electrode at different discharging/charging states. It is found that upon magnesiation crystalline Mg2Sn appears and subsequently disappears during de-magnesiation process, which indicates the good electrochemical activity of Sn nanoparticles in Sn/rGO hybrid nanocomposite for magnesium storage. Our result will open new avenue to develop high-efficient magnesium storage material for rechargeable Mg batteries.
Zhang Changhuan , Li Nianwu , Yao Hurong , Liu Lin , Yin Yaxia , Guo Yuguo . Synthesis of Sn Nanoparticles/Graphene Nanosheet Hybrid Electrode Material with Three-Dimensional Conducting Network for Magnesium Storage[J]. Acta Chimica Sinica, 2017 , 75(2) : 206 -211 . DOI: 10.6023/A16100542
[1] Ye, Y.; Zhu, J.; Yao, Y.; Wang, Y.; Wu, P.; Tang, Y.; Zhou, Y.; Lu, T. Acta Chim. Sinica 2015, 73, 151. (叶亚, 朱婧怡, 姚依男, 王雨果, 吴平, 唐亚文, 周益明, 陆天虹, 化学学报, 2015, 73, 151.)
[2] Lyu, Z.; Feng, R.; Zhao, J.; Fan, H.; Xu, D.; Wu, Q.; Yang, L.; Chen, Q.; Wang, X.; Hu, Z. Acta Chim. Sinica 2015, 73, 1013. (吕之阳, 冯瑞, 赵进, 范豪, 徐丹, 吴强, 杨立军, 陈强, 王喜章, 胡征, 化学学报, 2015, 73, 1013.)
[3] Qiu, Z. P.; Zhang, Y. J.; Xia, S. B.; Dong, P. Acta Chim. Sinica 2015, 73, 992. (邱振平, 张英杰, 夏书标, 董鹏, 化学学报, 2015, 73, 992.)
[4] Luo, F.; Zheng, J. Y.; Chu, G.; Liu, B. N.; Zhang, S. L.; Li, H.; Chen, L. Q. Acta Chim. Sinica 2015, 73, 808. (罗飞, 郑杰允, 褚赓, 刘柏男, 张素林, 李泓, 陈立泉, 化学学报, 2015, 73, 808.)
[5] Yan, Y.; Yin, Y. X.; Guo, Y. G.; Wan, L. J. Sci. China-Chem. 2014, 57, 1564.
[6] Matsui, M. J. Power Sources 2011, 196, 7048.
[7] Ling, C.; Banerjee, D.; Matsui, M. Electrochim. Acta 2012, 76, 270.
[8] Saha, P.; Datta, M. K.; Velikokhatnyi, O. I.; Manivannan, A.; Alman, D.; Kumta, P. N. Prog. Mater. Sci. 2014, 66, 1.
[9] Yoo, H. D.; Shterenberg, I.; Gofer, Y.; Gershinsky, G.; Pour, N.; Aurbach, D. Energ. Environ. Sci. 2013, 6, 2265.
[10] Shterenberg, I.; Salama, M.; Gofer, Y.; Levi, E.; Aurbach, D. Mrs. Bull. 2014, 39, 453.
[11] Aurbach, D.; Lu, Z.; Schechter, A.; Gofer, Y.; Gizbar, H.; Turgeman, R.; Cohen, Y.; Moshkovich, M.; Levi, E. Nature 2000, 407, 724.
[12] Aurbach, D.; Weissman, I.; Gofer, Y.; Levi, E. Chem. Rec. 2003, 3, 61.
[13] Chusid, O.; Gofer, Y.; Gizbar, H.; Vestfrid, Y.; Levi, E.; Aurbach, D.; Riech, I. Adv. Mater. 2003, 15, 627.
[14] Levi, E.; Gofer, Y.; Aurbach, D. Chem. Mater. 2010, 22, 860.
[15] Imamura, D.; Miyayama, M.; Hibino, M.; Kudo, T. J. Electrochem. Soc. 2003, 150, A753.
[16] Tao, Z. L.; Xu, L. N.; Gou, X. L.; Chen, J.; Yuan, H. T. Chem. Commun. 2004, 18, 2080.
[17] Singh, N.; Arthur, T. S.; Ling, C.; Matsui, M.; Mizuno, F. Chem. Commun. 2013, 49, 149.
[18] Shao, Y.; Gu, M.; Li, X.; Nie, Z.; Zuo, P.; Li, G.; Liu, T.; Xiao, J.; Cheng, Y.; Wang, C.; Zhang, J. G.; Liu, J. Nano Lett. 2014, 14, 255.
[19] Wu, N.; Lyu, Y. C.; Xiao, R. J.; Yu, X.; Yin, Y. X.; Yang, X. Q.; Li, H.; Gu, L.; Guo, Y. G. Npg Asia Mater. 2014, 6, e120.
[20] Wu, N.; Yang, Z. Z.; Yao, H. R.; Yin, Y. X.; Gu, L.; Guo, Y. G. Angew. Chem. Int. Ed. 2015, 54, 5757.
[21] He, D.; Wu, D.; Gao, J.; Wu, X.; Zeng, X.; Ding, W. J. Power Sources 2015, 294, 643.
[22] Kim, C.; Phillips, P. J.; Key, B.; Yi, T.; Nordlund, D.; Yu, Y.-S.; Bayliss, R. D.; Han, S.-D.; He, M.; Zhang, Z.; Burrell, A. K.; Klie, R. F.; Cabana, J. Adv. Mater. 2015, 27, 3377.
[23] Liang, Y.; Yoo, H. D.; Li, Y.; Shuai, J.; Calderon, H. A.; Hernandez, F. C. R.; Grabow, L. C.; Yao, Y. Nano Lett. 2015, 15, 2194.
[24] Murgia, F.; Stievano, L.; Monconduit, L.; Berthelot, R. J. Mater. Chem. A 2015, 3, 16478.
[25] Su, S.; Huang, Z.; Nuli, Y.; Tuerxun, F.; Yang, J.; Wang, J. Chem. Commun. 2015, 51, 2641.
[26] Huang, J.; Poyraz, A. S.; Takeuchi, K. J.; Takeuchi, E. S.; Marschilok, A. C. Chem. Commun. 2016, 52, 4088.
[27] Malyi, O. I.; Tan, T. L.; Manzhos, S. J. Power Sources 2013, 233, 341.
[28] Xin, S.; Guo, Y. G.; Wan, L. J. Acc. Chem. Res. 2012, 45, 1759.
[29] Hummers, W. S.; Offeman, R. E. J. Am. Chem. Soc. 1958, 80, 1339.
[30] Mizrahi, O.; Amir, N.; Pollak, E.; Chusid, O.; Marks, V.; Gottlieb, H.; Larush, L.; Zinigrad, E.; Aurbach, D. J. Electrochem. Soc. 2008, 155, A103.
/
〈 |
|
〉 |