Review

Research Progress of the FuranContaining Fused Ring Conjugated Organic Molecules and Polymers

  • Liu Ye ,
  • Yuan Jun ,
  • Zou Yingping ,
  • Li Yongfang
Expand
  • a College of Chemistry and Chemical Engineering, Central South University, Changsha 410083;
    b CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190

Received date: 2016-09-17

  Revised date: 2016-12-23

  Online published: 2017-01-18

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 51673205, 51173206) and Project of Innovation-driven Plan in Central South University, China (2016CX035).

Abstract

Currently, as organic semiconductor materials, thiophene fused ring derivatives and the related polymers have received considerable research and application. Furan has similar chemical structure and electronic properties with thiophene due to the same main group heterocyclic atom in five-membered ring system. But furan and furan derivatives possess smaller aromaticity, higher carrier mobility, higher fluorescence quantum efficiency and better solubility, thus more and more attentions have been paid to the design and synthesis of furan-containing fused rings for the application in organic optoelectronic materials. This paper reviewed the recent research progresses of the synthetic methods, properties and applications of the conjugated organic small molecules and polymers based on the furan-containing fused rings.

Cite this article

Liu Ye , Yuan Jun , Zou Yingping , Li Yongfang . Research Progress of the FuranContaining Fused Ring Conjugated Organic Molecules and Polymers[J]. Acta Chimica Sinica, 2017 , 75(3) : 257 -270 . DOI: 10.6023/A16090495

References

[1] Gidron, O.; Dadvand, A.; Sheynin, Y.; Bendikov, M.; Perepichka, D. F. Chem. Commun. 2011, 47, 1976.
[2] Gidron, O.; Diskin-Posner, Y.; Bendikov, M. J. Am. Chem. Soc. 2010, 132, 2148.
[3] Chen, L.; Tang, X.; Jia, K.; Tang, X. Z. Chin. J. Org. Chem. 2016, 36, 2197. (陈垒, 唐翔, 贾坤, 唐先忠, 有机化学, 2016, 36, 2197.)
[4] Nakano, M.; Mori, H.; Shinamura, S.; Takimiya, K. Chem. Mater. 2011, 24, 190.
[5] Qian, D.; Liu, B.; Wang, S.; Himmelberger, S.; Linares, M.; Vagin, M.; Salleo, A. J. Mater. Chem. A 2015, 3, 24349.
[6] Nakano, M.; Niimi, K.; Miyazaki, E.; Osaka, I.; Takimiya, K. J. Org. Chem. 2012, 77, 8099.
[7] Nakano, M.; Shinamura, S.; Houchin, Y.; Osaka, I.; Miyazaki, E.; Takimiya, K. Chem. Commun. 2012, 48, 5671.
[8] Mitsui, C.; Soeda, J.; Miwa, K.; Tsuji, H.; Takeya, J.; Nakamura, E. J. Am. Chem. Soc. 2012, 134, 5448.
[9] Shinamura, S.; Osaka, I.; Miyazaki, E.; Nakao, A.; Yamagishi, M.; Takeya, J.; Takimiya, K. J. Am. Chem. Soc. 2011, 133, 5024.
[10] Nakano, M.; Shinamura, S.; Sugimoto, R.; Osaka, I.; Miyazaki, E.; Takimiya, K. Org. Lett. 2012, 14, 5448.
[11] Niimi, K.; Mori, H.; Miyazaki, E.; Osaka, I.; Kakizoe, H.; Takimiya, K.; Adachi, C. Chem. Commun. 2012, 48, 5892.
[12] Nakahara, K.; Mitsui, C.; Okamoto, T.; Yamagishi, M.; Miwa, K.; Sato, H.; Takeya, J. Chem. Lett. 2013, 42, 654.
[13] Nakahara, K.; Mitsui, C.; Okamoto, T.; Yamagishi, M.; Matsui, H.; Ueno, T.; Hirose, Y. Chem. Commun. 2014, 50, 5342.
[14] Suraru, S. L.; Burschka, C.; Würthner, F. J. Org. Chem. 2013, 79, 128.
[15] Ripaud, E.; Demeter, D.; Rousseau, T.; Boucard-Cétol, E.; Allain, M.; Po, R.; Leriche, P.; Roncali, J. Dyes Pigm. 2012, 95, 126.
[16] Jung, I.; Lee, J. K.; Song, K. H.; Song, K.; Kang, S. O.; Ko, J. J. Org. Chem. 2007, 72, 3652.
[17] Anderson, S.; Taylor, P. N.; Verschoor, G. L. Chem.-Eur. J. 2004, 10, 518.
[18] Hwu, J. R.; Chuang, K. S.; Chuang, S. H.; Tsay, S. C. Org. Lett. 2005, 7, 1545.
[19] Tsuji, H.; Mitsui, C.; Ilies, L.; Sato, Y.; Nakamura, E. J. Am. Chem. Soc. 2007, 129, 11902.
[20] Tsuji, H.; Mitsui, C.; Sato, Y.; Nakamura, E. Adv. Mater. 2009, 21, 3776.
[21] Qiu, B.; Yuan, J.; Zou, Y.; He, D.; Peng, H.; Li, Y.; Zhang, Z. Org. Electron. 2016, 35, 87.
[22] Vecchi, P. A.; Padmaperuma, A. B.; Qiao, H.; Sapochak, L. S.; Burrows, P. E. Org. Lett. 2006, 8, 4211.
[23] Han, C.; Xie, G.; Xu, H.; Zhang, Z.; Xie, L.; Zhao, Y.; Huang, W. Adv. Mater. 2011, 23, 2491.
[24] Jeon, S. O.; Lee, J. Y. J. Mater. Chem. 2012, 22, 10537.
[25] Lee, C. W.; Yook, K. S.; Lee, J. Y. Org. Electron. 2013, 14, 1009.
[26] Deng, L.; Li, J.; Wang, G. X.; Wu, L. Z. J. Mater. Chem. C. 2013, 1, 8140.
[27] Liu, B.; Chen, X.; He, Y.; Xiao, L.; Li, Y.; Zhou, K.; Zou, Y. RSC Adv. 2013, 3, 5366.
[28] Shi, S.; Xie, X.; Gao, C.; Shi, K.; Chen, S.; Yu, G.; Wang, H. Macromolecules 2014, 47, 616.
[29] Shi, S.; Shi, K.; Chen, S.; Qu, R.; Wang, L.; Wang, M.; Wang, H. J. Polym. Sci., Part A:Polym. Chem. 2014, 52, 2465.
[30] Huo, L.; Hou, J.; Zhang, S.; Chen, H. Y.; Yang, Y. Angew. Chem., Int. Ed. 2010, 49, 1500.
[31] Huo, L.; Liu, T.; Sun, X.; Cai, Y.; Heeger, A. J.; Sun, Y. Adv. Mater. 2015, 27, 2938.
[32] Yuan, J.; Zou, Y.; Cui, R.; Chao, Y. H.; Wang, Z.; Ma, M.; Xiao, D. Macromolecules 2015, 48, 4347.
[33] Qiu, B.; Yuan, J.; Xiao, X.; He, D.; Qiu, L.; Zou, Y.; Li, Y. ACS Appl. Mater. Interfaces 2015, 7, 25237.
[34] Li, S.; Yuan, Z.; Deng, P.; Sun, B.; Zhang, Q. Polym. Chem. 2014, 5, 2561.
[35] Li, H.; Jiang, P.; Yi, C.; Li, C.; Liu, S. X.; Tan, S.; Decurtins, S. Macromolecules 2010, 43, 8058.
[36] Chen, X.; Liu, B.; Zou, Y.; Xiao, L.; Guo, X.; He, Y.; Li, Y. J. Mater. Chem. 2012, 22, 17724.
[37] Liu, B.; Chen, X.; Zou, Y.; Xiao, L.; Xu, X.; He, Y.; Li, Y. Macromolecules 2012, 45, 6898.
[38] Liu, B.; Chen, X.; Zou, Y.; He, Y.; Xiao, L.; Xu, X.; Li, Y. Polym. Chem. 2013, 4, 470.
[39] Huo, L.; Huang, Y.; Fan, B.; Guo, X.; Jing, Y.; Zhang, M.; Hou, J. Chem. Commun. 2012, 48, 3318.
[40] Huo, L.; Ye, L.; Wu, Y.; Li, Z.; Guo, X.; Zhang, M.; Hou, J. Macromolecules 2012, 45, 6923.
[41] Hong, G.; Zou, Y.; Antaris, A. L.; Diao, S.; Wu, D.; Cheng, K.; Wu, J. Z. Nat. Commun. 2014, 5.
[42] Hong, G.; Lee, J. C.; Robinson, J. T.; Raaz, U.; Xie, L.; Huang, N. F.; Dai, H. Nat. Med. 2012, 18, 1841.
[43] Warnan, J.; Cabanetos, C.; Labban, A. E.; Hansen, M. R.; Tassone, C.; Toney, M. F.; Beaujuge, P. M. Adv. Mater. 2014, 26, 4357.
[44] Mateker, W. R.; Heumueller, T.; Cheacharoen, R.; Sachs-Quintana, I. T.; McGehee, M. D.; Warnan, J.; Bazan, G. C. Chem. Mater. 2015, 27, 6345.
[45] Huo, L.; Liu, T.; Fan, B.; Zhao, Z.; Sun, X.; Wei, D.; Yu, M.; Liu, Y.; Sun, Y. Adv. Mater. 2015, 27, 6969.
[46] Liu, B.; Qiu, B.; Chen, X.; Xiao, L.; Li, Y.; He, Y.; Zou, Y. Polym. Chem. 2014, 5, 5002.
[47] Huang, W.; Yang, B.; Sun, J.; Liu, B.; Yang, J.; Zou, Y.; Gao, Y. Org. Electron. 2014, 15, 1050.
[48] Bian, L.; Hai, J.; Zhu, E.; Yu, J.; Liu, Y.; Zhou, J.; Tang, W. J. Mater. Chem. A 2015, 3, 1920.
[49] Shi, Q.; Fan, H.; Liu, Y.; Hu, W.; Li, Y.; Zhan, X. Macromolecules 2011, 44, 9173.
[50] Sista, P.; Huang, P.; Gunathilake, S. S.; Bhatt, M. P.; Kularatne, R. S.; Stefan, M. C.; Biewer, M. C. J. Polym. Sci., Part A:Polym. Chem. 2012, 50, 4316.
[51] Sista, P.; Nguyen, H.; Murphy, J. W.; Hao, J.; Dei, D. K.; Palaniappan, K.; Dastoor, P. C. Macromolecules 2010, 43, 8063.
[52] Xiang, A.; Li, H.; Chen, S.; Liu, S. X.; Decurtins, S.; Bai, M.; Liao, J. Nanoscale 2015, 7, 7665.
[53] Li, Z.; Li, H.; Chen, S.; Froehlich, T.; Yi, C.; Schönenberger, C.; Borguet, E. J. Am. Chem. Soc. 2014, 136, 8867.
[54] Kobilka, B. M.; Dubrovskiy, A. V.; Ewan, M. D.; Tomlinson, A. L.; Larock, R. C.; Chaudhary, S.; Jeffries-EL, M. Chem. Commun. 2012, 48, 8919.
[55] Aeschi, Y.; Li, H.; Cao, Z.; Chen, S.; Amacher, A.; Bieri, N.; Liu, S. X. Org. Lett. 2013, 15, 5586.
[56] Fan, L.; Cui, R.; Guo, X.; Qian, D.; Qiu, B.; Yuan, J.; Li, Y.; Huang, W.; Yang, J.; Liu, W.; Xu, X.; Li, L.; Zou, Y. J. Mater. Chem. C 2014, 2, 5651.
[57] Cui, R.; Zou, Y.; Xiao, L.; Hsu, C. S.; Keshtov, M. L.; Godovsky, D. Y.; Li, Y. Dyes Pigm. 2015, 116, 139.
[58] Qiu, B.; Cui, R.; Yuan, J.; Peng, H.; Zhang, Z.; Li, Y.; Zou, Y. Phys. Chem. Chem. Phys. 2015, 17, 17592.
[59] He, D.; Qiu, L.; Zhang, Z.; Li, Y.; Pan, C.; Zou, Y. RSC Adv. 2016, 6, 62923.
[60] Zhang, H.; Guo, E.; Fang, Y.; Ren, P.; Yang, W. J. Polym. Sci., Part A:Polym. Chem. 2009, 47, 5488.
[61] Pan, X. X.; Huo, L. J. Chin. J. Org. Chem. 2016, 36, 687. (潘雪雪, 霍利军, 有机化学, 2016, 36, 687.)

Outlines

/