Pore Size Effect of Ru-Zn/ZrO2 Catalyst on Partial Hydrogenation of Benzene to Cyclohexene
Received date: 2016-10-28
Revised date: 2017-01-20
Online published: 2017-02-13
Supported by
Project supported by the National Key Research Program of China (No. 2012CB224804), the National Key Research and Development Project of China (No. 2016YFB0301602), the National Natural Science Foundation of China (No. 21373055), Science and Technology Commission of Shanghai Municipality (No. 08DZ2270500), Beijing Synchrotron Radiation Facility, the Scientific and Technological Research Program of Chongqing Municipal Education Commission (No. KJ1500305), and the Science & Technology Commission of Chongqing Municipality (No. cstc2016jcyjA0392).
Partial hydrogenation of benzene to cyclohexene is an important industrial process and features exceptional superiority to processes such as dehydration of cyclohexanol, dehydrogenation of cyclohexane, and the Birch reduction in terms of inexpensive feedstock, succinct reaction route and consequently, improved operational simplicity. In this work, the pore size effect on the partial hydrogenation of benzene to cyclohexene over the Ru-Zn/ZrO2 catalysts was studied for the first time. Three ZrO2 supports with the same tetragonal crystallographic form (t-ZrO2) but different pore sizes were synthesized by the precipitation and the solvothermal methods. Using these ZrO2 samples, the Ru-Zn/ZrO2 catalysts were prepared by the deposition-precipitation method followed by reduction in ZnSO4·7H2O aqueous solution. The supports and catalysts were characterized by powder X-ray diffraction (XRD), N2 physisorption, inductively coupled plasma-atomic emission spectroscopy (ICP-AES), CO chemisorption, X-ray photoelectron spectroscopy (XPS), X-ray absorption near-edge structure (XANES), temperature-programmed reduction of H2 (H2-TPR), and transmission electron microscopy (TEM). It is identified that the Ru nanoparticles (NPs) on these catalysts had similar size and chemical state. In the partial hydrogenation of benzene to cyclohexene, a pronounced pore size effect of the catalyst was identified. With the increase in the pore size, while the turnover frequency (TOF) of benzene was essentially unchanged, the initial selectivity (S0) to cyclohexene increased steadily. The Ru-Zn/ZrO2(11.7) catalyst with the ZrO2 support having the pore size of 11.7 nm exhibited the highest S0 (88%) and yield (54%) of cyclohexene. On the basis of the characterization results, the similarity in the TOFs of benzene on the Ru-Zn/ZrO2 catalysts with different pore sizes is associated with the identical sizes of the Ru NPs. On the other hand, we tentatively propose that the ZrO2 support with large pore size is beneficial for the out-diffusion of the cyclohexene nano-droplets formed in the pore channels, thus avoiding consecutive hydrogenation to cyclohexane and improving the S0.
Key words: Ru-Zn/ZrO2; pore size effect; benzene; cyclohexene; hydrogenation
Zhou Gongbing , Wang Hao , Pei Yan , Qiao Minghua , Sun Bin , Zong Baoning . Pore Size Effect of Ru-Zn/ZrO2 Catalyst on Partial Hydrogenation of Benzene to Cyclohexene[J]. Acta Chimica Sinica, 2017 , 75(3) : 321 -328 . DOI: 10.6023/A16100569
[1] Dou, R. F.; Tan, X. H.; Fan, Y. Q.; Pei, Y.; Qiao, M. H.; Fan, K. N.; Sun, B.; Zong, B. N. Acta Chim. Sinica 2016, 74, 503. (窦镕飞, 谭晓荷, 范义秋, 裴燕, 乔明华, 范康年, 孙斌, 宗保宁, 化学学报, 2016, 74, 503.)
[2] Sun, H. J.; Jiang, H. B.; Li, S. H.; Dong, Y. Y.; Wang, H. X.; Pan, Y. J.; Liu, S. C.; Tang, M. S.; Liu, Z. Y. Chem. Eng. J. 2013, 218, 415.
[3] Sun, H. J.; Wang, H. X.; Jiang, H. B.; Li, S. H.; Liu, S. C.; Liu, Z. Y.; Yuan, X. M.; Yang, K. J. Appl. Catal. A 2013, 450, 160.
[4] Zhang, P.; Wu, T. B.; Jiang, T.; Wang, W. T.; Liu, H. Z.; Fan, H. L.; Zhang, Z. F.; Han, B. X. Green Chem. 2013, 15, 152.
[5] Xu, H. L.; Huang, J. J.; Yang, X. Y.; Du, J. M.; Shen, J.; Shen, W. Acta Chim. Sinica 2006, 64, 1615. (徐华龙, 黄静静, 杨新艳, 杜俊明, 沈江, 沈伟, 化学学报, 2006, 64, 1615.)
[6] Kang, J. C.; Cheng, K.; Zhang, L.; Zhang, Q. H.; Ding, J. S.; Hua, W. Q.; Lou, Y. C.; Zhai, Q. G.; Wang, Y. Angew. Chem. Int. Ed. 2011, 50, 5200.
[7] Liu, Y. C.; Fang, K. G.; Chen, J. G.; Sun, Y. H. Green Chem. 2007, 9, 611.
[8] Zuo, S. F.; Huang, Q. Q.; Zhou, R. X. Catal. Today 2008, 139, 88.
[9] Gelesky, M. A.; Chiaro, S. S. X.; Pavan, F. A.; dos Santos, J. H. Z.; Dupont, J. Dalton Trans. 2007, 5549.
[10] Xia, Q. H.; Hidajat, K.; Kawi, S. Catal. Today 2001, 68, 255.
[11] Wang, J. Q.; Guo, P. J.; Qiao, M. H.; Yan, S. R.; Fan, K. N. Acta Chim. Sinica 2004, 62, 1765. (王建强, 郭平均, 乔明华, 闫世润, 范康年, 化学学报, 2004, 62, 1765.)
[12] Job, N.; Pereira, M. F. R.; Lambert, S.; Cabiac, A.; Delahay, G.; Colomer, J. F.; Marien, J.; Figueiredo, J. L.; Pirard, J. P. J. Catal. 2006, 240, 160.
[13] Preising, H.; Enke, D. Colloids Surf. A 2007, 300, 21.
[14] Zhou, G. B.; Liu, J. L.; Tan, X. H.; Pei, Y.; Qiao, M. H.; Fan, K. N.; Zong, B. N. Ind. Eng. Chem. Res. 2012, 51, 12205.
[15] Zhao, Y. J.; Zhou, J.; Zhang, J. G.; Wang, S. D. J. Mol. Catal. A 2009, 309, 35.
[16] Wang, Z. Q.; Ma, Y. C.; Lin, J. X. J. Mol. Catal. A 2013, 378, 307.
[17] Campbell, P. S.; Santini, C. C.; Bayard, F.; Chauvin, Y.; Collière, V.; Podgoršek, A.; Costa Gomes, M. F.; Sá, J. J. Catal. 2010, 275, 99.
[18] Moulder, J. F.; Stickle, W. F.; Sobol, P. E.; Bomben, K. D. In Handbook of X-ray Photoelectron Spectroscopy, Ed.:Chastain, J., Perkin-Elmer, Minnesota, 1992, p. 89.
[19] Deroubaix, G.; Marcus, P. Surf. Interface Anal. 1992, 18, 39.
[20] Silvestre-Albero, J.; Serrano-Ruiz, J. C.; Sepúlveda-Escribano, A.; Rodríguez-Reinoso, F. Appl. Catal. A 2005, 292, 244.
[21] Lorenzut, B.; Montini, T.; Pavel, C. C.; Comotti, M.; Vizza, F.; Bianchini, C.; Fornasiero, P. ChemCatChem 2010, 2, 1096.
[22] Wang, J. Q.; Wang, Y. Z.; Xie, S. H.; Qiao, M. H.; Li, H. X.; Fan, K. N. Appl. Catal. A 2004, 272, 29.
[23] Yuan, P. Q.; Wang, B. Q.; Ma, Y. M.; He, H. M.; Cheng, Z. M.; Yuan, W. K. J. Mol. Catal. A 2009, 309, 124.
[24] Schwab, F.; Lucas, M.; Claus, P. Angew. Chem. Int. Ed. 2011, 50, 10453.
[25] Schwab, F.; Lucas, M.; Claus, P. Green Chem. 2013, 15, 646.
[26] Zhao, Y. J.; Zhou, J.; Zhang, J. G.; Wang, S. D. Catal. Lett. 2009, 131, 597.
[27] Zhou, X. L.; Sun, H. J.; Guo, W.; Liu, Z. Y.; Liu, S. C. J. Nat. Gas Chem. 2011, 20, 53.
[28] Foppa, L.; Dupont, J. Chem. Soc. Rev. 2015, 44, 1886.
[29] Li, W. Z.; Huang, H.; Li, H. J.; Zhang, W.; Liu, H. C. Langmuir 2008, 24, 8358.
[30] Jung, K. T.; Bell, A. T. J. Mol. Catal. A 2000, 163, 27.
[31] Warren, B. E. J. Appl. Phys. 1941, 12, 375.
[32] Robertson, S. D.; Anderson, R. B. J. Catal. 1971, 23, 286.
[33] Elmasides, C.; Kondarides, D. I.; Grünert, W.; Verykios, X. E. J. Phys. Chem. B 1999, 103, 5227.
[34] Ravel, B.; Newville, M. J. Synchrotron Rad. 2005, 12, 537.
[35] Sun, H. J.; Li, Y. Y.; Li, S. H.; Zhang, Y. X.; Liu, S. C.; Liu, Z. Y.; Ren, B. Z. Acta Phys.-Chim. Sin. 2014, 30, 1332. (孙海杰, 李永宇, 李帅辉, 张元馨, 刘寿长, 刘仲毅, 任保增, 物理化学学报, 2014, 30, 1332.)
[36] Bu, J.; Wang, J. Q.; Qiao, M. H.; Yan, S. R.; Li, H. X.; Fan, K. N. Acta Chim. Sinica 2007, 65, 1338. (卜娟, 王建强, 乔明华, 闫世润, 李和兴, 范康年, 化学学报, 2007, 65, 1338.)
[37] Wang, L. J.; Zhang, A. Q.; Li, L.; Liu, H. F.; Liu, S. Z. Acta Chim. Sinica 2012, 70, 1021. (王丽娟, 张爱清, 李琳, 刘汉范, 刘书正, 化学学报, 2012, 70, 1021.)
/
〈 |
|
〉 |