Communication

[1+1] and [2+1] Additions on a (5,5) Single-Walled Carbon Nanotube with V1~V4 Vacancies Based on Defect Curvature: A First Principles Study

  • Li Lei ,
  • Jia Guixiao ,
  • Wang Xiaoxia ,
  • Wu Tongwei ,
  • Song Xiwen ,
  • An Shengli
Expand
  • a School of Materials and Metallurgy, Inner Mongolia University of Science and Technology, Baotou 014010;
    b Key Laboratory of New Functional Ceramics and Devices of Inner Mongolia Autonomous Region, Baotou 014010

Received date: 2016-11-29

  Revised date: 2017-02-13

  Online published: 2017-02-13

Supported by

Project supported by the Natural Science Foundation of Inner Mongolia (No. 2016MS0513) and Youth Talent Incubator of Inner Mongolia University of Science and Technology (No. 2014CY012).

Abstract

Binding energies, geometric and electronic structures for[1+1] (H/[1+1]) and[2+1] (O/[2+1]) additions of H and O atoms on a (5,5) single-walled carbon nanotube with V1~V4 vacancies are studied using a GGA-PBE method in this work. Defect curvature proposed on the basis of directional curvature theory, including atomic curvature (KM-def) and bond curvature (KD-def), is used to predict the reactivities of different atoms and bonds at the defect structural area. We find that the existence of vacancy defects enhances the H and O adsorption ability on the (5,5) tube. The calculated results show that in the V1 and V3 defects the C atoms with two-coordination have the strongest chemical activity for[1+1] and[2+1] additions, and among which the C atoms participated into[2+1] additions form carbonyl groups with O. For other atoms and bonds at the defect structural area, the binding energies of one H atom on the (5,5) tube monotonously increases with the increase of KM-def. When the KD-def of C-C bonds for the O/[2+1] additions are large, the C-C bonds are easily broken, and they are corresponding to adducts with the C-O-C configuration structures and large binding energies. When the KD-def of C-C bonds are small, the C-C bonds are not broken, and they are corresponding to adducts with the closed-3MR (three-member ring) structures. The binding energies for the H/[1+1] and O/[2+1] additions on the (5,5) tube mainly are determined by the curvature and affected by the electronic density in frontier orbital and partial density of state (PDOS) of C atoms participated in the reactions. The large electronic density in the highest occupied molecular orbital (HOMO) and large PDOS of C atoms near the Fermi level strengthen the adsorption of H and O atoms on the (5,5) tube. This study will provide a theoretical basis for surface modifications of carbon nanotubes with vacancy defects.

Cite this article

Li Lei , Jia Guixiao , Wang Xiaoxia , Wu Tongwei , Song Xiwen , An Shengli . [1+1] and [2+1] Additions on a (5,5) Single-Walled Carbon Nanotube with V1~V4 Vacancies Based on Defect Curvature: A First Principles Study[J]. Acta Chimica Sinica, 2017 , 75(3) : 284 -292 . DOI: 10.6023/A16110645

References

[1] Dresselhaus, M. S.; Dresselhaus, G.; Avouris, P. Carbon Nano-tubes:Synthesis, Structure, Properties and Applications, Springer, Germany, 2001, pp. 11~28.
[2] Zhou, Z. W.; Li, Q. W.; Chen, L. Z.; Liu, C. H.; Fan, S. S. Acta Chim. Sinica 2016, 74, 738(in Chinese). (周智伟, 李庆威, 陈鲁倬, 刘长洪, 范守善, 化学学报, 2016, 74, 738.)
[3] Li, L. C.; Zhang, M.; Mao, S.; Yang, C.; Tian, A. M. Acta Chim. Sinica 2015, 73, 143(in Chinese). (李来才, 张明, 毛双, 杨春, 田安民, 化学学报, 2015, 73, 143.)
[4] Zhu, H.; Suenaga, K.; Hashimoto, A.; Urita, K.; Iijima, S. Chem. Phys. Lett. 2005, 412, 116.
[5] Ouyang, M. Science 2001, 292, 702.
[6] Huang, J.; Chen, S.; Ren, Z.; Wang, Z.; Kempa, K.; Naughton, M.; Chen, G.; Dresselhaus, M. Phys. Rev. Lett. 2007, 98, 185501.
[7] Stone, A. J.; Wales, D. J. Chem. Phys. Lett. 1986, 128, 501.
[8] Lusk, M. T.; Wu, D. T.; Carr, L. D. Phys. Rev. B 2010, 81, 155444.
[9] Lahiri, J.; Lin, Y.; Bozkurt, P.; Oleynik, I. I.; Batzill, M. Nat. Nanotechnol. 2010, 53, 1.
[10] Lee, G. D.; Wang, C. Z.; Yoon, E.; Hwang, N. M.; Ho, K. M. Appl. Phys. Lett. 2010, 97, 093106.
[11] Sharma, S.; Chandra, R.; Kumar, P.; Kumar, N. Comput. Mater. Sci. 2014, 86, 1.
[12] Rafiee, R.; Pourazizi, R. Mater. Res. 2014, 17, 758.
[13] Zhou, Q. X.; Wang, C. Y.; Fu, Z. B.; Tang, Y. J.; Zhang, H. Front. Phys. 2014, 9, 200.
[14] Mashapa, M. G.; Chetty, N.; Ray, S. S. J. Nanosci. Nanotechnol. 2012, 12, 7030.
[15] Kotakoski, J.; Krasheninnikov, A. V.; Nordlund, K. Phys. Rev. B 2006, 74, 245420.
[16] Amorim, R. G.; Fazzio, A.; Antonelli, A.; Novaes, F. D.; da Silva, A. J. R. Nano Lett. 2007, 7, 2459.
[17] Charlier, J. C. Acc. Chem. Res. 2002, 35, 1063.
[18] Lu, X.; Chen, Z. F.; Schleyer, P. R. J. Am. Chem. Soc. 2005, 127, 20.
[19] Goclon, J.; Kozlowska, M.; Rodziewicz, P. Chem. Phys. Chem. 2015, 16, 2775.
[20] Zhang, S.; Mielke, S. L.; Khare, R.; Troya, D.; Ruoff, R. S.; Schatz, G. C.; Belytschko, T. Phys. Rev. B 2005, 71, 115403.
[21] Dumitrica, T.; Hua, M.; Yakobson, B. I. Proc. Natl. Acad. Sci. 2006, 103, 6105.
[22] Sammalkorpi, M.; Krasheninnikov, A.; Kuronen, A.; Nordlund, K.; Kaski, K. Phys. Rev. B 2004, 70, 245416.
[23] Zhou, R. L.; He, H. Y.; Pan, B. C. Phys. Rev. B 2007, 75, 113401.
[24] He, H. Y.; Pan, B. C. Phys. E 2008, 40, 542.
[25] He, H. Y.; Pan, B. C. J. Phys. Chem. C 2008, 112, 18876.
[26] Terrones, M.; Terrones, H.; Banhart, F.; Charlier, J. C.; Ajayan, P. M. Science 2000, 288, 1226.
[27] Lu, A. J.; Pan, B. C. Phys. Rev. B 2005, 71, 165416.
[28] Li, W.; Lu, X. M.; Li, G. Q.; Ma, J. J.; Yu, Z. P.; Chen, J. F.; Pan, Z. L.; He, Q. Y. Appl. Surf. Sci. 2016, 364, 560.
[29] Zhou, Q. X.; Yang, X.; Fu, Z. B.; Wang, C. Y.; Yuan, L.; Zhang, H.; Tang, Y. J. Phys. E 2015, 65, 77.
[30] Goclon, J.; Kozlowska, M.; Rodziewicz, P. Chem. Phys. Chem. 2015, 16, 2775.
[31] He, H. Y.; Pan, B. C. Front. Phys. 2009, 4, 297.
[32] Shukla, P. K.; Mishra, P. C. Chem. Phys. 2010, 369, 101.
[33] Zhuang, H. L.; Zheng, G. P.; Soh, A. K. Comp. Mater. Sci. 2008, 43, 823.
[34] Inntam, C.; Limtrakul, J. J. Phys. Chem. C 2010, 114, 21327.
[35] Sozykin, S. A.; Beskachko, V. P.; Vyatkin, G. P. Mater. Sci. Forum. 2016, 843, 132.
[36] Orellana, W. Phys. Rev. B 2009, 80, 075421.
[37] Chen, C. H.; Huang, C. C. Sep. Purif. Technol. 2009, 65, 305.
[38] Jia, G. X.; Pan, F.; Bao, J. X.; Song, X. W.; Zhang, Y. F. Surf. Sci. 2015, 633, 29.
[39] Li, J. Q.; Jia, G. X.; Zhang, Y. F. Chem. Eur. J. 2007, 13, 6430.
[40] Jia, G. X.; Li, J. Q.; Zhang, Y. F. Acta Chim. Sinica 2005, 63, 97(in Chinese). (贾桂霄, 李俊篯, 章永凡, 化学学报, 2005, 63, 97.)
[41] Li, J. Q.; Jia, G. X.; Zhang, Y. F.; Chen, Y. Chem. Mater. 2006, 18, 3579.
[42] Chen, Y.; Li, J. Q.; Hu, C. L. J. Phys. Chem. C 2008, 112, 18787.
[43] Chen, Y.; Li, J. Q.; Chen, L.G. J. Theor. Comput. Chem. 2008, 7, 681.
[44] Jia, G. X.; Li, J. Q.; Chen, L. G.; Li, Y.; Ding, K. N.; Zhang, Y. F. Inter. J. Quant. Chem. 2009, 109, 668.
[45] Jia, G. X.; Li, X. G.; Song, X. W.; Li, J. Q.; Chen, Y. Surf. Sci. 2013, 608, 122.
[46] Jia, G. X.; Pan, F.; Bao, J. X.; Song, X. W.; Zhang, Y. F. Surf. Sci. 2015, 633, 29.
[47] Jia, G. X.; Li, L.; Wang, X. X.; Sun, S. S.; Bao, J. X.; An, S. L. "Curvature and Size Effects on Reactivities of Mono- to Octa-Vacancies in a (5,5) Single-Walled Carbon nanotube" Chinese J. Struc. Chem. In Press.
[48] Hohenberg, P.; Kohn, W. Phys. Rev. 1964, 136, B864.
[49] Kohn, W.; Sham, L. J. Phys. Rev. 1965, 140, A1133.
[50] Kresse, G.; Furthmller, J. Phys. Rev. B 1996, 54, 11169.
[51] Kresse, G.; Hafner, J. Phys. Rev. B 1993, 47, 588.

Outlines

/