Article

Study on the Aqueous Hybrid Supercapacitor Based on Carbon-coated NaTi2(PO4)3 and Activated Carbon Electrode Materials

  • Wang Chaoqiang ,
  • Qiu Feilong ,
  • Deng Han ,
  • Zhang Xiaoyu ,
  • He Ping ,
  • Zhou Haoshen
Expand
  • a Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China;
    b Energy Technology Research Institute, National Institute of Advanced Industrial Science and Technology(AIST), Tsukuba 3058568, Japan

Received date: 2016-10-04

  Revised date: 2017-02-22

  Online published: 2017-02-23

Supported by

Project supported by the National Basic Research Program of China (2014CB932302), National Natural Science Foundation of China (21673116, 21403107, 21373111), Natural Science Foundation of Jiangsu Province of China (BK20160068, BK20140055), PAPD of Jiangsu Higher Education Institutions, and the Project on Union of Industry-Study-Research of Jiangsu Province (BY2015069-01).

Abstract

Supercapacitors have been regarded as one of the next-generation energy storage devices because of the high power density, excellent cycling performance, long lifespan and easy maintenance. However, its relatively low specific energy hinders its application in the future. Recently, Na-ion based aqueous hybrid supercapacitors have attracted worldwide attention due to its high energy density, environment friendly and low cost. In our work, the Na-ion aqueous hybrid supercapacitor is constructed with NaTi2(PO4)3/C and commercial activated carbon as electrode materials. NaTi2(PO4)3/C nanoparticles with the size of about 40 nm were synthesized by high-temperature solid state reaction method using the NaTi2(PO4)3/C precursor that was prepared through the solution method with Ti(C4H9O)4, NH4H2PO4, Na2CO3 as the raw materials, and citric acid as the carbon source. The electrochemical tests were performed using 1 mol·L-1 Na2SO4 solution as the electrolyte. The carbon-coated NaTi2(PO4)3 electrode delivers the discharge capacity of 122 mAh·g-1 and shows an excellent cycling stability with the retention of 60% of the initial capacity after 1000 cycles at a 10C rate. The supercapacitor was consisted of NaTi2(PO4)3/C anode, AC cathode and 1 mol·L-1 Na2SO4 electrolyte. And the weight ratio of active materials in cathode and anode was 2.2. Cyclic voltammetry, galvanostatic test were employed to study the electrochemical properties of the supercapacitor. The as-fabricated device was then cycled between 0.15~1.4 V with different current density. Our results show the power density of 121.15 W·kg-1 with specific energy of 18.71 Wh·kg-1 at the current density of 0.5 A·g-1. Moreover, the specific energy and power density goes to 14.13 Wh·kg-1 and 2.42 kW·kg-1 at a higher current density of 10 A·g-1. More importantly, the device showed an excellent cycling stability with the retention of 76% after 1000 cycles at a current density of 1 A·g-1. This research shows the designed hybrid supercapacitor has the potential to be used as auxiliary high-power energy storage device for the practical applications.

Cite this article

Wang Chaoqiang , Qiu Feilong , Deng Han , Zhang Xiaoyu , He Ping , Zhou Haoshen . Study on the Aqueous Hybrid Supercapacitor Based on Carbon-coated NaTi2(PO4)3 and Activated Carbon Electrode Materials[J]. Acta Chimica Sinica, 2017 , 75(2) : 241 -246 . DOI: 10.6023/A16100523

References

[1] Miller, J.-R.; Simon, P. Science 2008, 321, 651.
[2] Bohlen, O.; Kowal, J.; Sauer, D.-U. J. Power Sources 2007, 172, 468.
[3] Ashtiani, C.; Wright, R.; Hunt, G. J. Power Sources 2006, 154, 561.
[4] Simon, P.; Gogotsi. Y. Nat. Mater. 2008, 7, 845.
[5] Zhang, Y.; Feng, H.; Wu, X.-B.; Wang, L.-Z.; Zhang, A.-Q.; Xia, T.-C.; Dong, H.-C.; Li, X.-F.; Zhang, L.-S. Int. J. Hydrogen Energ. 2009, 34, 4889.
[6] Conway, B.-E. Electrochemical Supercapacitors, Kluwer Academic/Plunum, New York, 1999.
[7] He, Y.-M.; Chen, W.-J.; Gao, C.-T.; Zhou, J.-Y.; Li, X.-D.; Xie, E.-Q. Nanoscale 2013, 5, 8799.
[8] Akihiko, Y.; Ichiro, T.; Yasuhiro, T.; Atsushi, N. IEEE Transactions On Components, Hybrids, And Manufacturing Technology, 1987, 10, 1.
[9] Honda, Y.; Haramoto, T.; Takeshige, M.; Shiozaki, H.; Kitamura, T.; Ishikawa, M. Electrochem. Solid-State Lett. 2007, 10, A106.
[10] Miller, J.-R.; Outlaw, R.-A.; Holloway, B.-C. Science 2010, 329, 1637.
[11] Su, S.-J.; Lai, Q.-X.; Liang, Y.-Y. Acta Chim. Sinica 2015, 73, 735. (苏善金, 来庆学, 梁彦瑜, 化学学报, 2015, 73, 735.)
[12] Wan, G.; Fu, Y.-A.; Guo, J.-N.; Xiang, Z.-H. Acta Chim. Sinica 2015, 73, 557. (万刚, 付宇昂, 郭佳宁, 向中华, 化学学报, 2015, 73, 557.)
[13] Burke, A. J. Power Sources 2000, 91, 37.
[14] Wen, L.-Y.; Mi, Y.; Wang, C.-L.; Fang, Y.-G.; Grote, F.-B.; Zhao, H.-P. Small 2014, 10, 3162.
[15] Kim, I.-H.; Kim, K.-B. J. Electrochem. Soc. 2006, 153, A383.
[16] Shi, Y.; Pan, L.-J.; Liu, B.-R.; Wang, Y.-Q.; Cui, Y.; Bao, Z.-N.; Yu, G.-H. J. Mater. Chem. A 2014, 2, 6086.
[17] Cheng, L.; Liu, H.-J.; Zhang, J.-J.; Xiong, H.-M.; Xia, Y.-Y. J. Electrochem. Soc. 2006, 153, A1472.
[18] Li, H.-Q.; Cheng, L.; Xia, Y.-Y. Electrochem. Solid-State Lett. 2005, 8, A433.
[19] Wang, Y.-G.; Xia, Y.-Y. J. Electrochem. Soc. 2006, 153, A450.
[20] Luo, J.-Y.; Xia, Y.-Y. J. Power Sources 2009, 186, 224.
[21] He, P.; Zhang, X.; Wang, Y.-G.; Cheng, L.; Xia, Y.-Y. J. Electrochem. Soc. 2008, 155, A144.
[22] He, P.; Luo, J.-Y.; He, J.-X.; Xia, Y.-Y. J. Electrochem. Soc. 2009, 156, A209.
[23] He, P.; Liu, J.-L.; Cui, W.-J.; Luo, J.-Y.; Xia, Y.-Y. Electrochim. Acta 2011, 56, 2351.
[24] Slater, M.-D.; Kim, D.; Lee, E.; Johnson, C.-S. Adv. Funct. Mater. 2013, 23, 947.
[25] Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Chem. Rev. 2014, 114, 11636.
[26] Kim, S.-W.; Seo, D.-H.; Ma, X.-H.; Ceder, G.; Kang, K. Adv. Energy Mater. 2012, 2, 710.
[27] Senthilkumar, B.; Ananya, G.; Ashok, P.; Ramaprabhu, S. Electrochim. Acta 2015, 169, 447.
[28] Liu, X.; Zhang, N.; Ni, J.; Gao, L.-J. J. Solid State Electrochem. 2013, 17, 1939.
[29] Aravindan, V.; Ling, W.-C.; Hartung, S.; Bucher, N.; Madhavi, S. Chem. Asian J. 2014, 9, 878.
[30] Luo, J.-Y.; Cui, W.-J.; He, P.; Xia, Y.-Y. Nat. Chem. 2010, 2, 760.
[31] Li, Z.; Ravnsbæk, D.-B.; Xiang, K.; Chiang, Y.-M. Electrochem. Commun. 2014, 44, 12.
[32] Luo, J.-Y.; Liu, J.-L.; He, P.; Xia, Y.-Y. Electrochim. Acta 2008, 53, 8128.

Outlines

/