Article

Hydrodesulfurization Performances of Pd Catalysts Supported on ZSM-5/MCM-41 Composite Zeolite

  • Yang Xiaodong ,
  • Wang Xinmiao ,
  • Gao Shanbin ,
  • Wang Anjie
Expand
  • a. Petrochemical Research Institute, CNPC, Daqing 163714, China;
    b. College of Science, State Key Laboratory of Heavy Oil Processing, China University of Petroleum Beijing, Beijing 102249, China;
    c. State Key Laboratory of Fine Chemical, Dalian University of Technology, Dalian 116012, China

Received date: 2017-01-20

  Online published: 2017-02-23

Supported by

Project supported by the China National Petroleum Corporation Fund (Nos. 2013E-1502, 2014B-2508).

Abstract

Siliceous MCM-41 (Si-MCM-41), two micro-mesoporous materials obtained either by physically mixing Si-MCM-41 with HZSM-5 zeolite (Z-MCM-41-M) or by coating Si-MCM-41 over HZSM-5 zeolite particles (Z-MCM-41), were prepared and characterized by means of XRD, N2 adsorption-desorption, pyridine adsorbed FT-IR. The hydrodesulfurization (HDS) performances of the supported Pd catalysts thereof, were evaluated with dibenzothiophene (DBT) as the model sulfur-containing molecule. The close relationship between the surface area of the support and the HDS performance for the supported Pd catalysts was not observed. The result indicated that the surface area of the support or the dispersion of the catalyst might not be the key parameter affecting the HDS performance of the supported Pd catalyst. However, the HDS performances of Pd catalysts were significantly influenced by the pore structures and acid properties of the supports. Pd catalysts supported on the acidic supports showed the enhancement of HDS and hydrogenation activities that was thought to be the effect of hydrogen spillover. Among the catalysts studied, Pd/Z-MCM-41 exhibited the highest HDS activity and excellent hydrogenation activities. The results demonstrated that mesoporous materials introducing to microporous zeolite was beneficial to the improvement of HDS activities, but only physically mixing Si-MCM-41 with HZSM-5 zeolite couldn't show the combination advantage of pore of mesoporous materials and acid properties of microporous zeolite, and further generate better synergistic catalytic action. Z-MCM-41 composite material with the regular structure and uniform distribution acidity was potential carriers for precious metal catalysts.

Cite this article

Yang Xiaodong , Wang Xinmiao , Gao Shanbin , Wang Anjie . Hydrodesulfurization Performances of Pd Catalysts Supported on ZSM-5/MCM-41 Composite Zeolite[J]. Acta Chimica Sinica, 2017 , 75(5) : 479 -484 . DOI: 10.6023/A17010031

References

[1] Song, C. S. Catal. Today 2003, 86, 211.
[2] Bej, S. K.; Maity, S. K.; Turaga, U. T. Energy Fuels 2004, 18, 1227.
[3] Kunisada, N.; Choi, K. H.; Korai, Y.; Mochida, I.; Nakano, K. Appl. Catal. A 2004, 269(1-2), 43.
[4] Liu, B.; Liu, L.; Wang, Z.; Chai, Y. M.; Liu, H.; Yin, C. L.; Liu, C. G. Catal. Today 2017, 282, 214.
[5] Zhang, M. H.; Fan, J. Y.; Chi, K. B.; Duan, A. J.; Zhao, Z.; Meng, X. L. Fuel Process. Technol. 2017, 156, 446.
[6] Olivas, A.; Luque, P. A.; Gómez-Gutiérrez, C. M.; Flores, D. L.; Valdez, R. Catal. Commun. 2017, 91, 67.
[7] Liu, W. Q.; Zhou, H.; Lei, W. N.; Shang, T. M.; Zhang, Q.; Sun, G. D. Acta Chim. Sinica 2011, 69, 1622 (in Chinese). (刘维桥, 周虎, 雷卫宁, 尚通明, 张强, 孙桂大, 化学学报, 2011, 69, 1622.)
[8] Guo, Y. N.; Zeng, P. H.; Ji, S. F.; Wei, N.; Liu, H.; Li, C. B. Chin. J. Catal. 2010, 31, 329.
[9] Zhang, L.; Fu, W. Q.; Yu, Q. Y.; Tang, T. D.; Zhao, Y. C.; Zhao, H. W.; Li, Y. D. J. Catal. 2016, 338, 210.
[10] Da Costa, P.; Potvin, C.; Manoli, J. M. J. Mol. Catal. A 2002, 184(1-2), 323.
[11] Niquille-Röthlisberger, A.; Prins R. J. Catal. 2006, 242(1), 207.
[12] Guo, H. L.; Sun, Y. Y.; Prins, R. Catal. Today 2008, 130(1), 249.
[13] Sun, Y. Y.; Prins, R. Angew. Chem. Int. Ed. 2008, 47, 8478.
[14] Fujikawa, T.; Idei, K.; Ebihara, T.; Mizuguchi, H.; Usui, K. Appl. Catal. A 2000, 192, 253.
[15] Barrio, V. L.; Arias, P. L.; Cambra, J. F.; Güemez, M. B.; Pawelec, B.; Fierro, J. L. Catal. Commun. 2004, 5, 173.
[16] Yoshimura, Y.; Toda, M.; Matsui, T.; Harada, M.; Ichihashi, Y.; Bando, K. K.; Yasuda, H.; Ishihara, H.; Morita, Y.; Kameoka, T. Appl. Catal. A 2007, 322, 152.
[17] Yashnik, S. A.; Chesaloy, Y. A.; Ishchenko, A. V.; Kaichev, V. V.; Ismagilov, Z. R. Appl. Catal. B 2017, 204, 89.
[18] Corma, A.; Martínez, A.; Martínez-Soria, V. J. Catal. 1997, 169(2), 480.
[19] Bai, X. L.; Sachtler, W. M. H. J. Catal. 1991, 129(1), 121.
[20] Yao, J.; Yao, Y. F. Int. J. Hydrogen Energy 2016, 41(33), 14747.
[21] Tang, T. D.; Yin C. Y.; Wang, L. F.; Ji Y. Y.; Xiao, F. S. J. Catal. 2007, 249(1), 111.
[22] Ji, C. C.; Zhang, L.; Li, L.; Xiao, F. K.; Zhao, N.; Wei, W.; Chen, Y. J.; Wu, F. Ind. Eng. Chem. Res. 2016, 55(29), 7853.
[23] Hartmann, M. Angew. Chem. Int. Ed. 2004, 43, 5880.
[24] Coriolano, A. C. F.; Silva, C. G. C.; Costa, M. J. F.; Pergher, S. B. C.; Calderia, V. P. S.; Araujo, A. S. Microporous Mesoporous Mater. 2013, 172, 206.
[25] Wang, L. Y.; Wang, A. J.; Li, X.; Zhou, F.; Hu, Y. K. Acta Petrol. Sin. (Petrol. Proc. Sec.) 2012, 28(3), 380 (in Chinese). (王林英, 王安杰, 李翔, 周峰, 胡永康, 石油学报(石油加工), 2012, 28(3), 380.)
[26] Chakraborty, B.; Viswanathan, B. Catal. Today 1999, 49(1-3), 253.
[27] Long, Y. C.; Xu, T. M.; Dong, W. Y.; Sun, Y. J. Acta Chim. Sinica 1999, 57, 1014 (in Chinese). (龙英才, 许太明, 董维阳, 孙尧俊, 化学学报, 1999, 57, 1014.)
[28] Xue, W.; Wang, D. D.; Wang, Y. J.; Liu, Y.; Wei, J. F. Acta Petrol. Sin. (Petrol. Proc. Sec.) 2008, B10, 73 (in Chinese). (薛伟, 王冬冬, 王延吉, 刘媛, 魏珺芳, 石油学报(石油加工), 2008, B10, 73.)
[29] Wang, J.; Huang, L. M.; Li, Q. Z. Appl. Catal. A 1998, 175, 191.
[30] Wang, J.; Li, Q. Z.; Yao, J. D. Appl. Catal. A 1999, 184(2), 181.
[31] Mendes, P. S. F.; Gregório, A. F. C.; Daudin, A.; Bouchy, C.; Silva, J. M.; Ribeiro, M. F. Catal. Commun. 2017, 89, 152.
[32] Simon, L. J.; Ommen, V. J. G.; Jentys, A.; Lercher, J. A. Catal. Today 2002, 73(1-2), 105.
[33] Wang, A. J.; Kabe, T. Chem. Commun. 1999, (20), 2067.
[34] Ren, J.; Wang, A. J.; Li, X.; Chen, Y. Y.; Liu, H. O.; Hu, Y. K. Appl. Catal. A 2008, 344(1-2), 175.

Outlines

/