Pt Tube-in-Tube Arrays as HighPerformance Electrocatalysts for Direct Methanol Fuel Cell
Received date: 2016-07-13
Revised date: 2016-10-07
Online published: 2017-03-03
Supported by
Project supported by the National Natural Science Foundation of China (51173212) and Natural Science Foundation of Guangdong Province (S2013020012833).
The Pt tube-in-tube arrays (TTAs) were designed and synthesized by ZnO template-assisted electrodeposition. As a robust integrated 3D electrocatalyst with high utilization rate and fast transport of electroactive species, the Pt TTAs exhibit a high electrochemically active surface area (ECSA) of 64.9 m2/gPt. Compared with Pt NTAs and commercial Pt/C catalyst, the Pt TTAs exhibit much improved electrocatalytic activity and durability for methanol oxidation. In addition, the Pt TTAs as electrocatalysts exhibit superior CO poisoning tolerance. This work shows the significant progress of Pt-based electrocatalysts with high-performance for direct methanol fuel cells.
Key words: Pt; electrocatalyst; tube-in-tube; methanol oxidation; electroactivity; durability
Li Qi , Xu Han , Tong Yexiang , Li Gaoren . Pt Tube-in-Tube Arrays as HighPerformance Electrocatalysts for Direct Methanol Fuel Cell[J]. Acta Chimica Sinica, 2017 , 75(2) : 193 -198 . DOI: 10.6023/A16070337
[1] Jin, R.; Yang, Y.; Xing, Y.; Chen, L.; Song, S.; Jin, R. ACS Nano 2014, 8, 3664.
[2] Zhang, G.; Xia, B. Y.; Xiao, C.; Yu, L.; Wang, X.; Xie, Y.; Lou, X. W. Angew. Chem. Int. Ed. 2013, 52, 8643.
[3] Lou, X. W.; Archer, L. A.; Yang, Z. Adv. Mater. 2008, 20, 3987.
[4] Wang, Z.; Zhou, L.; Lou, X. W. Adv. Mater. 2012, 24, 1903.
[5] Hu, J.; Chen, M.; Fang, X.; Wu, L. Chem. Soc. Rev. 2011, 40, 5472.
[6] Liu, J.; Qiao, S. Z.; Chen, J. S.; Lou, X. W.; Xing, X.; Lu, G. Q. Chem. Commun. 2011, 47, 12578.
[7] Lai, X.; Halpert, J. E.; Wang, D. Energy Environ. Sci. 2012, 5, 5604.
[8] Xia, B. Y.; Wu, H. B.; Wang, X.; Lou, X. W. J. Am. Chem. Soc. 2012, 134, 13934.
[9] Wang, Z.; Luan, D.; Boey, F. Y. C.; Lou, X. W. J. Am. Chem. Soc. 2011, 133, 4738.
[10] Wang, L.; Tang, F.; Ozawa, K.; Chen, Z.-G.; Mukherj, A.; Zhu, Y.; Zou, J.; Cheng, H.-M.; Lu, G. Q. Angew. Chem. Int. Ed. 2009, 48, 7048.
[11] Wang, B.; Chen, J. S.; Wu, H. B.; Wang, Z.; Lou, X. W. J. Am. Chem. Soc. 2011, 133, 17146.
[12] Fan, H. J.; Knez, M.; Scholz, R.; Nielsch, K.; Pippel, E.; Hesse, D.; Zacharias, M.; Gosele, U. Nat. Mater. 2006, 5, 627.
[13] Lai, X.; Li, J.; Korgel, B. A.; Dong, Z.; Li, Z.; Su, F.; Du, J.; Wang, D. Angew. Chem. Int. Ed. 2011, 50, 2738.
[14] Cho, W.; Lee, Y. H.; Lee, H. J.; Oh, M. Adv. Mater. 2011, 23, 1720.
[15] Yang, M.; Ma, J.; Zhang, C.; Yang, Z.; Lu, Y. Angew. Chem. Int. Ed. 2005, 44, 6727.
[16] Roy, P.; Berger, S.; Schmuki, P. Angew. Chem. Int. Ed. 2011, 50, 2904.
[17] Deng, M.-J.; Chang, J.-K.; Wang, C.-C.; Chen, K.-W.; Lin, C.-M.; Tang, M.-T.; Chen, J.-M.; Lu, K.-T. Energy Environ. Sci. 2011, 4, 3942.
[18] Kang, T.-S.; Smith, A. P.; Taylor, B. E.; Durstock, M. F. Nano Lett. 2009, 9, 601.
[19] Park, M.-H.; Cho, Y.; Kim, K.; Kim, J.; Liu, M.; Cho, J. Angew. Chem. Int. Ed. 2011, 50, 9647.
[20] Lee, S. B.; Mitchell, D. T.; Trofin, L.; Nevanen, T. K.; Soderlund, H.; Martin, C. R. Science 2002, 296, 2198.
[21] Zhu, Z. P.; Su, D. S.; Weinberg, G.; Schlogl, R. Nano Lett. 2004, 4, 2255.
[22] Albu, S.; Ghicov, A.; Aldabergenova, S.; Drechsel, P.; LeClere, D.; Thompson, G.; Macak, J.; Schmuki, P. Adv. Mater. 2008, 20, 4135.
[23] Peng, Q.; Sun, X. Y.; Spagnola, J. C.; Saquing, C.; Khan, S. A.; Spontak, R. J.; Parsons, G. N. ACS Nano 2009, 3, 546.
[24] Ben Ishai, M.; Patolsky, F. Angew. Chem. Int. Ed. 2009, 48, 8699.
[25] Wang, Y.-J.; Zhao, N.; Fang, B.; Li, H.; Bi, X. T.; Wang, H. Chem. Rev. 2015, 115, 3433.
[26] Rana, M.; Chhetri, M.; Loukya, B.; Patil, P. K.; Datta, R.; Gautam, U. K. ACS Appl. Mater. Interfaces 2015, 7, 4998.
[27] Ruan, M.; Sun, X.; Zhang, Y.; Xu, W. ACS Catal. 2015, 5, 233.
[28] Sneed, B. T.; Young, A. P.; Jalalpoor, D.; Golden, M. C.; Mao, S.; Jiang, Y.; Wang, Y.; Tsung, C.-K. ACS Nano 2014, 8, 7239.
[29] Zhang, C.; Xu, L.; Shan, N.; Sun, T.; Chen, J.; Yan, Y. ACS Catal. 2014, 4, 1926.
[30] Xie, S.; Choi, S.; Lu, N.; Roling, L. T.; Herron, J. A.; Zhang, L.; Park, J.; Wang, J.; Kim, M. J.; Xie, Z.; Mavrikakis, M.; Xia, Y. Nano Lett. 2014, 14, 3570.
[31] Zhang, Y.; Hsieh, Y.-C.; Volkov, V.; Su, D.; An, W.; Si, R.; Zhu, Y.; Liu, P.; Wang, J. X.; Adzic, R. R. ACS Catal. 2014, 4, 738.
[32] Qiu, H.-J.; Shen, X.; Wang, J. Q.; Hirata, A.; Fujita, T.; Wang, Y.; Chen, M. W. ACS Catal. 2015, 5, 3779.
[33] Zhang, L.; Iyyamperumal, R.; Yancey, D. F.; Crooks, R. M.; Henkelman, G. ACS Nano 2013, 7, 9168.
[34] Oezaslan, M.; Hasché, F.; Strasser, P. J. Phys. Chem. Lett. 2013, 4, 3273.
[35] Li, H.; Wu, H.; Zhai, Y.; Xu, X.; Jin, Y. ACS Catal. 2013, 3, 2045.
[36] Porter, N. S.; Wu, H.; Quan, Z.; Fang, J. Acc. Chem. Res. 2013, 46, 1867.
[37] Kang, Y.; Li, M.; Cai, Y.; Cargnello, M.; Diaz, R. E.; Gordon, T. R.; Wieder, N. L.; Adzic, R. R.; Gorte, R. J.; Stach, E. A.; Murray, C. B. J. Am. Chem. Soc. 2013, 135, 2741.
[38] Liu, Y.; Mustain, W. E. J. Am. Chem. Soc. 2013, 135, 530.
[39] Kang, Y.; Ye, X.; Chen, J.; Cai, Y.; Diaz, R. E.; Adzic, R. R.; Stach, E. A.; Murray, C. B. J. Am. Chem. Soc. 2013, 135, 42.
[40] Hwang, S. J.; Kim, S.-K.; Lee, J.-G.; Lee, S.-C.; Jang, J. H.; Kim, P.; Lim, T.-H.; Sung, Y.-E.; Yoo, S. J. J. Am. Chem. Soc. 2012, 134, 19508.
[41] Zhou, W.-P.; An, W.; Su, D.; Palomino, R.; Liu, P.; White, M. G.; Adzic, R. R. J. Phys. Chem. Lett. 2012, 3, 3286.
[42] Yang, J.; Yang, J.; Ying, J. Y. ACS Nano 2012, 6, 9373.
[43] Yu, W.; Porosoff, M. D.; Chen, J. G. Chem. Rev. 2012, 112, 5780.
[44] Tan, T. L.; Wang, L.-L.; Johnson, D. D.; Bai, K. Nano Lett. 2012, 12, 4875.
[45] Li, Y.; Li, Y.; Zhu, E.; McLouth, T.; Chiu, C.-Y.; Huang, X.; Huang, Y. J. Am. Chem. Soc. 2012, 134, 12326.
[46] Kang, Y.; Pyo, J. B.; Ye, X.; Gordon, T. R.; Murray, C. B. ACS Nano 2012, 6, 5642.
[47] Liu, H.-X.; Tian, N.; Brandon, M. P.; Zhou, Z.-Y.; Lin, J.-L.; Hardacre, C.; Lin, W.-F.; Sun, S.-G. ACS Catal. 2012, 2, 708.
[48] Kang, Y.; Qi, L.; Li, M.; Diaz, R. E.; Su, D.; Adzic, R. R.; Stach, E.; Li, J.; Murray, C. B. ACS Nano 2012, 6, 2818.
[49] Hong, J. W.; Kang, S. W.; Choi, B.-S.; Kim, D.; Lee, S. B.; Han, S. W. ACS Nano 2012, 6, 2410.
[50] Yamauchi, Y.; Tonegawa, A.; Komatsu, M.; Wang, H.; Wang, L.; Nemoto, Y.; Suzuki, N.; Kuroda, K. J. Am. Chem. Soc. 2012, 134, 5100.
[51] Koenigsmann, C.; Santulli, A. C.; Gong, K.; Vukmirovic, M. B.; Zhou, W.; Sutter, E.; Wong, S. S.; Adzic, R. R. J. Am. Chem. Soc. 2011, 133, 9783.
[52] Wang, L.; Nemoto, Y.; Yamauchi, Y. J. Am. Chem. Soc. 2011, 133, 9674.
[53] Wang, L.; Yamauchi, Y. Chem. Mater. 2011, 23, 2457.
[54] Zhang, H.; Jin, M.; Wang, J.; Li, W.; Camargo, P. H.; Kim, M. J.; Yang, D.; Xie, Z.; Xia, Y. J. Am. Chem. Soc. 2011, 133, 6078.
[55] Xia, B. Y.; Ng, W. T.; Wu, H. B.; Wang, X.; Lou, X. W. Angew. Chem. In. Ed. 2012, 51, 7213.
[56] Chen, Z.; Waje, M.; Li, W.; Yan, Y. Angew. Chem. In. Ed. 2007, 46, 4060.
/
〈 |
|
〉 |