Perspectives

Recent Progress on Gold-catalyzed Dearomatization Reactions

  • Wu Wen-Ting ,
  • Zhang Liming ,
  • You Shu-Li
Expand
  • a. State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032;
    b. Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106

Received date: 2017-02-13

  Online published: 2017-04-12

Supported by

Project supported by the National Key Research and Development Program of China (2016YFA0202900), National BasicResearch Program of China (973 Program 2015CB856600), the NSFC (21332009, 21421091), Key Research and Development Program of Bureau of Frontier Sciences and Education Chinese Academy of Sciences (QYZDY-SSW-SLH012), and the Strategic Priority Research Program of the Chinese Academyof Sciences (XDB20000000) for generous financial support.

Abstract

Homogeneous gold catalysis has experienced rapid development since 2004 and generally exhibited high efficiency and good functional group tolerance. On the other hand, catalytic dearomatization reactions provide a unique and straight approach to the construction of highly functionalized molecules with diverse three-dimensional structures from simple aromatic compounds. In this perspective, recent examples on gold-catalyzed dearomatization reactions are summarized in two main categories: gold-catalyzed rearrangements and gold-catalyzed hydrofunctionalizations of alkynes and allenes. In the first category, intra- and inter- molecular dearomatization reactions were achieved via gold-catalyzed rearrangements of propargylic ester and its derivatives. Although this area is still at its early stage, several outstanding asymmetric examples have been reported by Shi and Toste. In the second category, an array of dearomatization reactions via gold-catalyzed hydrofunctionalizations of alkynes and allenes were presented. All these cases have shown great potentials for convenient and straightforward construction of spiro and/or bridged polycyclic molecules, and some of them have exhibited excellent enantioselectivity. In addition, salient features and proposed mechanisms for these two types of reactions are also described.

Cite this article

Wu Wen-Ting , Zhang Liming , You Shu-Li . Recent Progress on Gold-catalyzed Dearomatization Reactions[J]. Acta Chimica Sinica, 2017 , 75(5) : 419 -438 . DOI: 10.6023/A17020049

References

[1] Ito, Y.; Sawamura, M.; Hayashi, T. J. Am. Chem. Soc. 1986, 108, 6405.
[2] (a) Teles, J. H.; Brode, S.; Chabanas, M. Angew. Chem., Int. Ed. 1998, 37, 1415;
(b) Mizushima, E.; Sato, K.; Hayashi, T.; Tanaka, M. Angew. Chem., Int. Ed. 2002, 41, 4563.
[3] For recent books: (a) Toste, F. D.; Michelet, V. Gold Catalysis: An Homogeneous Approach, Imperial College Press, London, 2014;
(b) Slaughter, L. M. Homogeneous Gold Catalysis, Springer, 2015;
(c) Rappoport, Z.; Liebman, J. F.; Marek, I. The Chemistry of Organogold Compounds, Wiley, Chichester, 2014.
[4] For recent reviews: (a) Hashmi, A. S. K. Acc. Chem. Res. 2014, 47, 864;
(b) Yeom, H.-S.; Shin, S. Acc. Chem. Res. 2014, 47, 966;
(c) Zhang, L. Acc. Chem. Res. 2014, 47, 877;
(d) Wang, Y.-M.; Lackner, A. D.; Toste, F. D. Acc. Chem. Res. 2014, 47, 889;
(e) Obradors, C.; Echavarren, A. M. Acc. Chem. Res. 2014, 47, 902;
(f) Zhang, D.-H.; Tang, X.-Y.; Shi, M. Acc. Chem. Res. 2014, 47, 913;
(g) Yang, W.; Hashmi, A. S. K. Chem. Soc. Rev. 2014, 43, 2941;
(h) Xie, J.; Pan, C.; Abdukader, A.; Zhu, C. Chem. Soc. Rev. 2014, 43, 5245;
(i) Muratore, M. E.; Homs, A.; Obradors, C.; Echavarren, A. M. Chem. Asian J. 2014, 9, 3066;
(j) Inamdar, S. M.; Konala, A.; Patil, N. T. Chem. Commun. 2014, 50, 15124;
(k) Obradors, C.; Echavarren, A. M. Chem. Commun. 2014, 50, 16;
(l) Gu, P.; Xu, Q.; Shi, M. Tetrahedron Lett. 2014, 55, 577;
(m) Qian, D.; Zhang, J. Chem. Soc. Rev. 2015, 44, 677;
(n) Joost, M.; Amgoune, A.; Bourissou, D. Angew. Chem., Int. Ed. 2015, 54, 15022;
(o) Jia, M.; Bandini, M. ACS Catal. 2015, 5, 1638;
(p) Debrouwer, W.; Heugebaert, T. S. A.; Roman, B. I.; Stevens, C. V. Adv. Synth. Catal. 2015, 357, 2975;
(q) Goodwin, J. A.; Aponick, A. Chem. Commun. 2015, 51, 8730;
(r) Dorel, R.; Echavarren, A. M. J. Org. Chem. 2015, 80, 7321;
(s) Ranieri, B.; Escofet, I.; Echavarren, A. M. Org. Biomol. Chem. 2015, 13, 7103;
(t) Wei, F.; Song, C.; Ma, Y.; Zhou, L.; Tung, C.-H.; Xu, Z. Sci. Bull. 2015, 60, 1479;
(u) Liu, L.; Zhang, J. Chem. Soc. Rev. 2016, 45, 506;
(v) Zheng, Z.; Wang, Z.; Wang, Y.; Zhang, L. Chem. Soc. Rev. 2016, 45, 4448;
(w) Zi, W.; Dean, T. F. Chem. Soc. Rev. 2016, 45, 4567;
(x) Li, Y.; Li, W.; Zhang, J. Chem. Eur. J. 2017, 23, 467.
[5] (a) Hashmi, A. S. K.; Rudolph, M. Chem. Soc. Rev. 2008, 37, 1766;
(b) Alcaide, B.; Almendros, P.; Alonso, J. M. Molecules 2011, 16, 7815;
(c) Rudolph, M.; Hashmi, A. S. K. Chem. Soc. Rev. 2012, 41, 2448;
(d) Barbour, P. M.; Marholz, L. J.; Chang, L.; Xu, W.; Wang, X. Chem. Lett. 2014, 43, 572;
(e) Fensterbank, L.; Malacria, M. Acc. Chem. Res. 2014, 47, 953;
(f) Füerstner, A. Angew. Chem., Int. Ed. 2014, 53, 8587;
(g) Füerstner, A. Acc. Chem. Res. 2014, 47, 925;
(h) Zhang, Y.; Luo, T.; Yang, Z. Nat. Prod. Rep. 2014, 31, 489;
(i) Pflästerer, D.; Hashmi, A. S. K. Chem. Soc. Rev. 2016, 45, 1331.
[6] Gorin, D. J.; Toste, F. D. Nature 2007, 446, 395.
[7] For a recent book: (a) Hashmi, A. S. K.; Toste, D. F.; Toste, F. D. Modern Gold Catalyzed Synthesis, Wiley, 2012; For recent selected examples:
(b) Chen, B.; Yu, C.; Zhang, G. Chin. J. Org. Chem. 2015, 35, 625 (陈斌, 于丛军, 张国柱, 有机化学, 2015, 35, 625);
(c) Li, L.; Zhou, B.; Ye, L.-W. Chin. J. Org. Chem. 2015, 35, 655 (李龙, 周波, 叶龙武, 有机化学, 2015, 35, 655);
(d) Zhang, X.; Sun, X.; Cui, X.; Zhang, H. Chin. J. Org. Chem. 2015, 35, 1700 (张小祥, 孙小萍, 崔杏丽, 张海飞, 有机化学, 2015, 35, 1700);
(e) Zhang, X.; Sun, X.; Zhang, H.; Cui, X.; Ma, M. Chin. J. Org. Chem. 2015, 35, 1469 (张小祥, 孙小萍, 张海飞, 崔杏丽, 马猛涛, 有机化学, 2015, 35, 1469);
(f) Li, X.-L.; Wang, J.-Q.; Li, L.; Yin, Y.-W.; Ye, L.-W. Acta Chim. Sinica. 2016, 74, 49 (李新玲, 王佳琪, 李龙, 尹应武, 叶龙武, 化学学报, 2016, 74, 49).
[8] For recent reviews: (a) Pape, A. R.; Kaliappan, K. P.; Kündig, E. P. Chem. Rev. 2000, 100, 2917;
(b) Zhuo, C.-X.; Zhang, W.; You, S.-L. Angew. Chem., Int. Ed. 2012, 51, 12662;
(c) Zhuo, C.-X.; Zheng, C.; You, S.-L. Acc. Chem. Res. 2014, 47, 2558;
(d) Wu, W.-T.; Zhang, L.; You, S.-L. Chem. Soc. Rev. 2016, 45, 1570;
(e) Sun, W.; Li, G.; Hong, L.; Wang, R. Org. Biomol. Chem. 2016, 14, 2164;
(f) Zheng, C.; You, S.-L. Chem. 2016, 1, 830; For recent selected examples:
(g) Duan, D.-H.; Yin, Q.; Wang, S.-G; Gu, Q.; You, S.-L. Acta Chim. Sinica. 2014, 72, 1001 (段德河, 殷勤, 王守国, 顾庆, 游书力, 化学学报, 2014, 72, 1001);
(h) Wang, Y.; Liu, R.; Gao, J.; Jia, Y. Chin. J. Org. Chem. 2017, 37, 691 (王永刚, 刘人荣, 高建荣, 贾义霞, 有机化学, 2017, 37, 691).
[9] (a) Krause, N.; Winter, C. Chem. Rev. 2011, 111, 1994;
(b) Rudolph, M.; Hashmi, A. S. K. Chem. Commun. 2011, 47, 6536;
(c) Gulevich, A. V.; Dudnik, A. S.; Chernyak, N.; Gevorgyan, V. Chem. Rev. 2013, 113, 3084;
(d) Qian, D.; Zhang, J. Chem. Rec. 2014, 14, 280;
(e) Wei, Y.; Shi, M. ACS Catal. 2016, 2515.
[10] Bandini, M. Chem. Soc. Rev. 2011, 40, 1358.
[11] Zhang, L. J. Am. Chem. Soc. 2005, 127, 16804.
[12] Yang, J.-M.; Li, P.-H.; Wei, Y.; Tang, X.-Y.; Shi, M. Chem. Commun. 2016, 52, 346.
[13] Zi, W.; Wu, H.; Toste, F. D. J. Am. Chem. Soc. 2015, 137, 3225.
[14] Zhang, G.; Huang, X.; Li, G.; Zhang, L. J. Am. Chem. Soc. 2008, 130, 1814.
[15] Zhang, G.; Zhang, L. J. Am. Chem. Soc. 2008, 130, 12598.
[16] Briones, J. F.; Davies, H. M. L. J. Am. Chem. Soc. 2012, 134, 11916.
[17] Tokimizu, Y.; Oishi, S.; Fujii, N.; Ohno, H. Org. Lett. 2014, 16, 3138.
[18] (a) Nevado, C.; Echavarren, A. M. Synthesis 2005, 167;
(b) Kitamura, T. Eur. J. Org. Chem. 2009, 2009, 1111;
(d) Yamamoto, Y. Chem. Soc. Rev. 2014, 43, 1575.
[19] Ferrer, C.; Echavarren, A. M. Angew. Chem., Int. Ed. 2006, 45, 1105.
[20] Ferrer, C.; Amijs, C. H. M.; Echavarren, A. M. Chem. Eur. J. 2007, 13, 1358.
[21] Zhang, Y.-Q.; Zhu, D.-Y.; Jiao, Z.-W.; Li, B.-S.; Zhang, F.-M.; Tu, Y.-Q.; Bi, Z. Org. Lett. 2011, 13, 3458.
[22] Cheng, B.; Huang, G.; Xu, L.; Xia, Y. Org. Biomol. Chem. 2012, 10, 4417.
[23] Xu, W.; Wang, W.; Wang, X. Angew. Chem., Int. Ed. 2015, 54, 9546.
[24] Nishiyama, D.; Ohara, A.; Chiba, H.; Kumagai, H.; Oishi, S.; Fujii, N.; Ohno, H. Org. Lett. 2016, 18, 1670.
[25] Zhang, L.; Wang, Y.; Yao, Z. J.; Wang, S.; Yu, Z.-X. J. Am. Chem. Soc. 2015, 137, 13290.
[26] Nemoto, T.; Matsuo, N.; Hamada, Y. Adv. Synth. Catal. 2014, 356, 2417.
[27] Aparece, M. D.; Vadola, P. A. Org. Lett. 2014, 16, 6008.
[28] Wu, W.-T.; Xu, R.-Q.; Zhang, L.; You, S.-L. Chem. Sci. 2016, 7, 3427.
[29] Liu, Y.; Xu, W.; Wang, X. Org. Lett. 2010, 12, 1448.
[30] Noey, E. L.; Wang, X.; Houk, K. N. J. Org. Chem. 2011, 76, 3477.
[31] Podoll, J. D.; Liu, Y.; Chang, L.; Walls, S.; Wang, W.; Wang, X. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 15573.
[32] Barbour, P. M.; Podoll, J. D.; Marholz, L. J.; Wang, X. Bioorg. Med. Chem. Lett. 2014, 24, 5602.
[33] Chang, L.; Podoll, J. D.; Wang, W.; Walls, S.; O'Rourke, C. P.; Wang, X. J. Med. Chem. 2014, 57, 3803.
[34] Barbour, P. M.; Wang, W.; Chang, L.; Pickard, K. L.; Rais, R.; Slusher, B. S.; Wang, X. Adv. Synth. Catal. 2016, 358, 1482.
[35] Cera, G.; Crispino, P.; Monari, M.; Bandini, M. Chem. Commun. 2011, 47, 7803.
[36] Bandini, M.; Eichholzer, A. Angew. Chem., Int. Ed. 2009, 48, 9533.
[37] Cera, G.; Chiarucci, M.; Bandini, M. Pure Appl. Chem. 2012, 84, 1673.
[38] Cera, G.; Chiarucci, M.; Mazzanti, A.; Mancinelli, M.; Bandini, M. Org. Lett. 2012, 14, 1350.
[39] Zheng, N.; Chang, Y.-Y.; Zhang, L.-J.; Gong, J.-X.; Yang, Z. Chem. Asian J. 2016, 11, 371.
[40] Modha, S. G.; Kumar, A.; Vachhani, D. D.; Jacobs, J.; Sharma, S. K.; Parmar, V. S.; Van Meervelt, L.; Van der Eycken, E. V. Angew. Chem., Int. Ed. 2012, 51, 9572.
[41] Modha, S. G.; Vachhani, D. D.; Jacobs, J.; Van Meervelt, L.; Van der Eycken, E. V. Chem. Commun. 2012, 48, 6550.
[42] Kumar, A.; Vachhani, D. D.; Modha, S. G.; Sharma, S. K.; Parmar, V. S.; Van der Eycken, E. V. Beilstein J. Org. Chem. 2013, 9, 2097.
[43] Tokimizu, Y.; Oishi, S.; Fujii, N.; Ohno, H. Angew. Chem., Int. Ed. 2015, 54, 7862.
[44] 审稿人认为N上炔丙基的迁移在形式上更倾向于[3,3]-重排的过程.
[45] Shibuya, T.; Noguchi, K.; Tanaka, K. Angew. Chem., Int. Ed. 2012, 51, 6219.
[46] Oka, J.; Okamoto, R.; Noguchi, K.; Tanaka, K. Org. Lett. 2015, 17, 676.
[47] Baba, T.; Oka, J.; Noguchi, K.; Tanaka, K. Eur. J. Org. Chem. 2015, 2015, 4374.
[48] Jia, M.; Cera, G.; Perrotta, D.; Monari, M.; Bandini, M. Chem. Eur. J. 2014, 20, 9875.
[49] Shen, Z.-Q.; Li, X.-X.; Shi, J.-W.; Chen, B.-L.; Chen, Z. Tetrahedron Lett. 2015, 56, 4080.
[50] Jia, M.; Monari, M.; Yang, Q.-Q.; Bandini, M. Chem. Commun. 2015, 51, 2320.
[51] Ocello, R.; De Nisi, A.; Jia, M.; Yang, Q.-Q.; Monari, M.; Giacinto, P.; Bottoni, A.; Miscione, G. P.; Bandini, M. Chem. Eur. J. 2015, 21, 18445.
[52] Pirovano, V.; Decataldo, L.; Rossi, E.; Vicente, R. Chem. Commun. 2013, 49, 3594.
[53] Wang, Y.; Zhang, P.; Liu, Y.; Xia, F.; Zhang, J. Chem. Sci. 2015, 6, 5564.

Outlines

/