Article

Study on Selective Photocatalytic Oxidation of Ethanol During TiO2 Promoted Water-Splitting Process

  • Meng Chao ,
  • Wang Hua ,
  • Wu Yubin ,
  • Fu Xianzhi ,
  • Yuan Rusheng
Expand
  • State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116

Received date: 2016-11-28

  Online published: 2017-04-25

Supported by

Project supported by the National Natural Science Foundation of China (No. 21643009), the National Key Technologies R & D Program of China (No. 2014BAC13B03), the Natural Science Foundation of Fujian Province of China (No. 2015J01046), and the Independent Research Project of State Key Laboratory of Photocatalysis on Energy and Environment (No. 2014B01).

Abstract

In this work, the reaction mechanism of photocatalytic oxidation of sacrificial ethanol during water-splitting process by titanium dioxide (TiO2) has been studied. The pure rutile TiO2 or mixed-phase structure titania (P25) was employed as the typical photocatalyst in ethanol oxidation. The as-obtained results showed that the formation of 2,3-butanediol over TiO2 in heterogeneous systems is mainly due to the photochemical reaction proceeded between acetaldehyde molecule and ethanol molecule instead of the direct coupling of α-hydroxyethyl radicals. This is different from the early work claimed that the fundamental process to produce 2,3-butanediol is based on the direct coupling of α-hydroxyethyl radicals generated by TiO2 oxidation. The photochemical reaction between acetaldehyde molecule and ethanol molecule to form 2,3-butanediol can also occur when the concentration of the solid catalyst was reduced to certain degree if using P25 as catalyst in heterogeneous model, and the selectivity of 2,3-butanediol would change from ca. 60% to 0% when enlarging the concentration of P25 step by step. However, the selectivity of 2,3-butanediol is relatively invariable when the concentration of catalyst was changed if using rutile as photocatalyst. We thought that the distinct diffusing behaviors for mobile ·OHf and surface bound ·OHs generated on different titania can explain the varied selectivity when the solid concentration of TiO2 changed. The generation and diffusion of ·OH from the surface of P25 (80% anatase) to bulk solution is a key process to inhibit the direct coupling of α-hydroxyethyl radicals to produce acetaldehyde or further overoxidation products, and the reaction zone of ·OHf depends on the concentration of P25. For the case of rutile TiO2 promoted reaction, the lack of mobile ·OHf on rutile TiO2 makes the photochemical reaction between acetaldehyde molecule and ethanol molecule more facile to occur in bulk solution since the surface bound ·OHs can only have chance to attack the surface adsorbed substrates. This may be an important reason to explain why the selectivity of 2,3-butanediol in ethanol oxidation was not influenced significantly by the variation of rutile TiO2 concentration. All the results regarding ethanol transformation during photocatalytic process achieved here cast some light on the mechanistic understanding of the reactions proceeded on the surface of solid catalyst in heterogeneous model and in the bulk solution when both catalytic step and photochemical step existed simultaneously.

Cite this article

Meng Chao , Wang Hua , Wu Yubin , Fu Xianzhi , Yuan Rusheng . Study on Selective Photocatalytic Oxidation of Ethanol During TiO2 Promoted Water-Splitting Process[J]. Acta Chimica Sinica, 2017 , 75(5) : 508 -513 . DOI: 10.6023/A16110641

References

[1] Pan, C.; Gu, Z.-Z.; Dong, L. Acta Chim. Sinica 2009, 67, 1981. (潘 超, 顾忠泽, 董丽, 化学学报, 2009, 67, 1981.)
[2] Lv, X.-J.; Xu, Y.-M.; Wang, Z.; Zhao, J.-C.; Wu, Y.-D. Acta Chim. Sinica 2004, 62, 1455. (吕学钧, 许宜铭, 王智, 赵进才, 吴烨铤, 化学学报, 2004, 62, 1455.)
[3] Li, Y.-J.; Cao, T.-P.; Wang, C.-H.; Shao, C.-L. Acta Chim. Sinica 2011, 69, 2597. (李跃军, 曹铁平, 王长华, 邵长路, 化学学报, 2011, 69, 2597.)
[4] Wan, Z.-Q.; Zheng, S.-N.; Jia, C.-Y.; Yan, W. Acta Chim. Sinica 2009, 67, 403. (万中全, 郑树楠, 贾春阳, 延卫, 化学学报, 2009, 67, 403.)
[5] Guo, Q.; Xu, C.-B.; Ren, Z.-F.; Yang, W.-S.; Ma, Z.-B.; Dai, D.-X.; Fan, H.-J.; Minton, T. K.; Yang, X.-M. J. Am. Chem. Soc. 2012, 134, 13366.
[6] Xu, C.-B.; Yang, W.-S.; Ren, Z.-F.; Dai, D.-X.; Guo, Q.; Minton, T. K.; Yang, X.-M. J. Am. Chem. Soc. 2013, 135, 19039.
[7] Bamwenda, G. R.; Tsubota, S.; Nakamura, T.; Haruta, M. J. Photochem. Photobiol. A 1995, 89, 177.
[8] Idriss, H.; Seebauer, E. G. J. Mol. Catal. A: Chem. 2000, 152, 201.
[9] Llorca, J.; Homs, N.; Sales, J.; Piscina, P. R. D. L. J. Catal. 2002, 209, 306.
[10] Murdoch, M.; Waterhouse, G. I. N.; Nadeem, M. A.; Metson, J. B.; Keane, M. A.; Howe, R. F.; Llorca, J.; Idriss, H. Nat. Chem. 2011, 3, 489.
[11] Meng, C.; Yang, K.; Fu, X.-Z.; Yuan, R.-S. ACS Catal. 2015, 5, 3760.
[12] Lu, H.-Q.; Zhao, J.-H.; Li, L.; Gong, L.-M.; Zheng, J.-F.; Zhang, L.-X.; Wang, Z.-J.; Zhang, J.; Zhu, Z.-P. Energy Environ. Sci. 2011, 4, 3384.
[13] Yang, P.-J.; Zhao, J.-H.; Cao, B.-Y.; Li, L.; Wang, J.-Z.; Tian, X.-X.; Jia, S.-P.; Zhu, Z.-P. ChemCatChem 2015, 7, 2384.
[14] Wang, J.; Yang, P.-J.; Cao, B.-Y.; Zhao, J.-H.; Zhu, Z.-P. Appl. Surf. Sci. 2015, 325, 86.
[15] Lu, H.-Q.; Zhao, B.-B.; Zhang, D.; Lv, Y.-L.; Shi, B.-P.; Shi, X. C.; Wen, J.; Yao, J.-F.; Zhu, Z.-P. J. Photochem. Photobiol. A 2013, 272, 1.
[16] Cao, B.-Y.; Zhang, J.; Zhao, J.-H.; Wang, Z.-J.; Yang, P.-J.; Zhang, H.-X.; Li, L.; Zhu, Z.-P. ChemCatChem 2014, 6, 1673.
[17] Li, N.; Yan, W. J.; Yang, P.-J.; Zhang, H.-X.; Wang, Z.-J.; Zheng, J.-F.; Jia, S.-P.; Zhu, Z.-P. Green Chem. 2016, 18, 6029.
[18] Ohno, T.; Izumi, S.; Fujihara, K.; Masaki, Y.; Matsumura, M. J. Phys. Chem. B 2000, 104, 6801.
[19] Chai, Z.-G.; Zeng, T.-T.; Li, Q.; Lu, L.-Q.; Xiao, W.-J.; Xu, D.-S. J. Am. Chem. Soc. 2016, 138, 10128.
[20] Shimizu, Y.; Sugimoto, S.; Kawanishi, S.; Suzuki, N. Bull. Chem. Soc. Jpn. 1991, 64, 3607.
[21] Asmus, K. D.; Mockel, H.; Henglein, A. J. Phys. Chem. 1973, 77, 1218.
[22] Sun, L. Z.; Bolton, J. R. J. Phys. Chem. 1996, 100, 4127.
[23] Wu, W.-M.; Wen, L.-R.; Shen, L.-J.; Liang, R.-W.; Yuan, R.-S.; Wu, L. Appl. Catal. B 2013, 130~131, 163.
[24] Wu, W.-M.; Liu, G.; Liang, S.-J.; Chen, Y.; Shen, L.-J.; Zheng, H.-R.; Yuan, R.-S.; Hou, Y.-D.; Wu, L. J. Catal. 2012, 290, 13.
[25] Xu, Y.; Schoonen, M. A. A. Am. Mineral. 2000, 85, 543.
[26] Fujishima, A.; Zhang, X.; Tryk, D. A. Surf. Sci. Rep. 2008, 63, 515.
[27] Li, R.-G.; Weng, Y.-X.; Zhou, X.; Wang, X.-L.; Mi, Y.; Chong, R.-F.; Han, H.-X.; Li, C. Energy Environ. Sci. 2015, 8, 2377.
[28] Kavan, L.; Gratzel, M.; Gilbert, S. E.; Klemenz, C.; Scheel, J. J. Am. Chem. Soc. 1996, 118, 6716.
[29] Yamakata, A.; Ishibashi, T. A.; Onishi, H. Chem. Phys. 2007, 339, 133.
[30] Xu, M.; Gao, Y.; Moreno, E. M.; Kunst, M.; Muhler, M.; Wang, Y.; Idriss, H.; Wçll, C. Phys. Rev. Lett. 2011, 106, 138302.
[31] Tang, H.; Prasad, K.; Sanjines, R.; Schmid, P. E.; Levy, F. J. Appl. Phys. 1994, 75, 2042.
[32] Luttrell, T.; Halpegamage, S.; Tao, J.; Kramer, A.; Sutter, E.; Batzill, M. Sci. Rep. 2014, 4, 4043.
[33] Goto, H.; Hanada, Y.; Ohno, T.; Matsumura, M. J. Catal. 2004, 225, 223.
[34] Bui, T. D.; Kimura, A.; Ikeda, S.; Matsumura, M. J. Am. Chem. Soc. 2010, 132, 8453.
[35] Kim, W.; Tachikawa, T.; Moon, G. H.; Majima, T.; Choi, W. Angew. Chem., Int. Ed. 2014, 53, 14036.

Outlines

/