The Acid-Base Buffer Capacity of Red Soil Variable Charge Minerals and Its Surface Complexation Model
Received date: 2017-02-15
Online published: 2017-04-25
Supported by
Project supported by the "973" Program (2014CB441002) and the National Natural Science Foundation of China (41571130052).
Iron oxides and kaolinite are the main sources of variable charges in the red soil. As a result of being protonated and deprotonated under different acid-base conditions, the surface hydroxyl groups can buffer the pH changes of red soil. In this study, iron oxide and kaolinite were titrated by the standard HCl and NaOH solution through the auto potentiometric titration under the controlled pH=2.9~9.5, to study the surface charge of soil minerals. The X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and N2 desorption/adsorption isotherms (BET) were used to characterize the crystal structures, surface groups and specific surface areas of soil minerals. Based on the characterization data and titration curves, the acid-base properties of the minerals were analyzed by using 1-site/2-pK surface complexation model. The Gran plot method, commonly used to determine the equivalence points, was applied to calculate the concentration (Hs) and density (Ds) of the surface active sites on the soil minerals. The acid-base equilibrium constants (pKaint) of soil minerals were obtained by extrapolation and the corresponding pHpzc were calculated by the following formula:pHpzc=1/2 (pKa1int+pKa2int). The result of calculated value of pHpzc was nearly equal with the experimental value, which showed that it is feasible to apply this model calculation method on the soil minerals. In addition, the above parameters can explain the acid-base buffer capacity of the minerals quantitatively. The results show that goethite and kaolinite have the higher surface active site concentration. According to the parameters, the surface chemical speciation of minerals at different pH were calculated by Visual Minteq software with the double layer model (DLM) to explain the mechanism of acid-base buffer behavior on the mineral surfaces. Finally, the acid-base titration method and model calculation approach were also used to analyze the acid-base buffer capacity of the natural red soil samples. The feasibility of this method on the red soil was further verified. Then, the surface chemical species (≡SOH2+, ≡SO- and ≡SOH) of the red soil were calculated by surface complex model to further explain their acid-base buffer mechanism.
Cheng Pengfei , Wang Ying , Cheng Kuan , Li Fangbai , Qin Haoli , Liu Tongxu . The Acid-Base Buffer Capacity of Red Soil Variable Charge Minerals and Its Surface Complexation Model[J]. Acta Chimica Sinica, 2017 , 75(6) : 637 -644 . DOI: 10.6023/A17020056
[1] Li, Q. K. Chinese Red Soil, Vol. 1~2, Eds.:Zhao, Q. G.; Shi, H.; Gong, Z. T., Science Press, Beijing, 1983, p. 1(in Chinese). (李庆逵, 中国红壤, 卷1~2, 编辑:赵其国, 石华, 龚子同, 科学出版社, 北京, 1983, p. 1.)
[2] Xiong, Y.; Li, Q. K. Chinese Soil, Science Press, Beijing, 1990, pp. 502~508(in Chinese). (熊毅, 李庆逵, 中国土壤, 科学出版社, 北京, 1990, pp. 502~508.)
[3] Brown, K. A. Water, Air, Soil Pollut. 1987, 32, 201.
[4] Liao, B.; Guo, Z.; Zeng, Q.; Probst, A.; Probst, J. Water, Air, Soil Pollut.:Focus 2007, 7, 151.
[5] Fu, L.; Wu, J.; Yang, Y.; Qiu, L. Environ. Sci. 1993, 14(1), 20(in Chinese). (傅柳松, 吴杰民, 杨影, 邱理均, 环境科学, 1993, 14(1), 20.)
[6] Zhao, Y.; Duan, L.; Xing, J.; Larssen, T.; Nielsen, C. P.; Hao, J. Environ. Sci. Technol. 2009, 43, 8021.
[7] Guo, J. H.; Liu, X. J.; Zhang, Y.; Shen, J. L.; Han, W. X.; Zhang, W. F.; Christie, P.; Goulding, K. W. T.; Vitousek, P. M.; Zhang, F. S. Science 2010, 327, 1008.
[8] Liao, B. H.; Dai, Z. H. Acta Sci. Circumstantiae 1991, 11, 425(in Chinese). (廖柏寒, 戴昭华, 环境科学学报, 1991, 11, 425.)
[9] Reuss, J.; Cosby, B.; Wright, R. Nature 1987, 329, 27.
[10] Wright, R.; Cosby, B.; Flaten, M.; Reuss, J. Nature 1990, 343, 53.
[11] Larssen, T.; Schnoor, J. L.; Seip, H. M.; Dawei, Z. Sci. Total Environ. 2000, 246, 175.
[12] Li, J. Y.; Wang, N.; Xu, R. K. Soils 2009, 41, 932(in Chinese). (李九玉, 王宁, 徐仁扣, 土壤, 2009, 41, 932.)
[13] Xu, R. K. Soils 2015, 47, 238(in Chinese). (徐仁扣, 土壤, 2015, 47, 238.)
[14] Alekseeva, T.; Alekseev, A.; Xu, R. K.; Zhao, A. Z.; Kalinin, P. Environ. Geochem. Health 2011, 33, 137.
[15] Dixon, J. B.; Weed, S. B.; Dinauer, R. C. Minerals in Soil Environments, 2nd ed., Eds.:Barnhisel, R. I.; Bertsch, P. M., SSSA, USA, 1989, Chapter 15, p. 729.
[16] Yu, T. R.; Chen, Z. C. The Chemical Process in the Soil, Vol. 14, Ed.:Chen, Z. C., Science Press, Beijing, 1990, p. 432(in Chinese). (于天仁, 陈志诚, 土壤发生中的化学过程, 卷14, 编辑:陈志诚, 科学出版社, 北京, 1990, p. 432.)
[17] Yu, T. R.; Wang, Z. Q. Soil Analytical Chemistry, Vol. 11, Eds.:Chen, J. F.; He, Q., Science Press, Beijing, 1987, p. 337(in Chinese). (于天仁, 王振权, 土壤分析化学, 卷11, 编辑:陈家坊, 何群, 科学出版社, 北京, 1987, p. 337.)
[18] Wang, X. G.; Li, F. B. Persistent Organic Pollutants Forum and National Symposium on Persistent Organic Pollutants, Eds.:Yu, G.; Huang, J.; Wang, B.; Liu, Y. C., Chinese Chemical Society, Beijing, 2006, pp. 215~223(in Chinese). (王旭刚, 李芳柏, 持久性有机污染物论坛暨持久性有机污染物全国学术研讨会, 编者:余刚, 黄俊, 王斌, 刘意成, 中国化学会, 北京, 2006, pp. 215~223.)
[19] Wang, X. G.; Sun, L. R.; Zeng, F.; Li, F. B. Res. Environ. Sci. 2009, 22(4), 60(in Chinese). (王旭刚, 孙丽蓉, 曾芳, 李芳柏, 环境科学研究, 2009, 22(4), 60.)
[20] Gao, S.; He, G. P.; Wu, H. H.; Sun, W. Y. Acta Petrol. Mineral. 2005, 24, 239(in Chinese). (高嵩, 何广平, 吴宏海, 孙伟亚, 岩石矿物学杂志, 2005, 24, 239.)
[21] Gao, Y.; Mucci, A. Geochim. Cosmochim. Acta 2001, 65, 2361.
[22] Tan, W. F; Zhou, S. Z.; Liu, F.; Feng, X. H.; Li, X. H. Soils 2007, 39(5), 726(in Chinese). (谭文峰, 周素珍, 刘凡, 冯雄汉, 李学垣, 土壤, 2007, 39(5), 726.)
[23] Xu, R. K.; Zhao, A. Z.; Jiang, J. Ecol. Environ. 2011, 20(10), 1395 (in Chinese). (徐仁扣, 赵安珍, 姜军, 生态环境学报, 2011, 20(10), 1395.)
[24] Yu, X. J.; Chou, R. L. Chongqing Environ. Sci. 1998, 20(3), 11(in Chinese). (于锡军, 仇荣亮, 重庆环境科学, 1998, 20(3), 11.)
[25] Stumm, W. Chemistry of the Solid-water Interface:Processes at the Mineral-water and Particle-water Interface in Natural Systems, John Wiley & Son Inc., New York, 1992. pp. 13~23.
[26] Tombácz, E.; Szekeres, M. Langmuir 2001, 17, 1411.
[27] Davis, J. A.; Leckie, J. O. J. Colloid Interface Sci. 1978, 67, 90.
[28] Cagnasso, M.; Boero, V.; Franchini, M. A.; Chorover, J. Colloids Surf., B 2010, 76, 456.
[29] Liu, T.; Li, X.; Li, F.; Zhang, W.; Chen, M.; Zhou, S. Colloids Surf., A 2011, 379(1), 143.
[30] Li, X.; Liu, T.; Li, F.; Zhang, W.; Zhou, S.; Li, Y. J. Soil. Sediment. 2012, 12(2), 217.
[31] Zhou, D. H.; Li, X. H.; Xu, F. L. J. Huazhong Agric. Univ. 1996, 15(2), 153(in Chinese). (周代华, 李学垣, 徐凤琳, 华中农业大学学报, 1996, 15(2), 153.)
[32] Liu, T.; Li, X.; Li, F.; Tao, L.; Liu, H. Soil Sci. 2014, 179, 468.
[33] Djomgoue, P.; Njopwouo, D. J. Surf. Eng. Mater. Adv. Technol. 2013, 3, 275.
[34] Saikia, B. J.; Parthasarathy, G. J. Mod. Phys. 2010, 1, 206.
[35] Lu, S. J.; Tan, W. F.; Liu, F.; Feng, X. H. Acta Pedol. Sin. 2006, 43(5), 756(in Chinese). (陆泗进, 谭文峰, 刘凡, 冯雄汉, 土壤学报, 2006, 43(5),756.)
[36] Szekeres, M.; Tombácz, E. Colloids Surf., A 2012, 414, 302.
[37] Jolsterå, R.; Gunneriusson, L.; Forsling, W. J. Colloid Interface Sci. 2010, 342, 493.
[38] Frini-Srasra, N.; Kriaa, A.; Srasra, E. Russ. J. Electrochem. 2007, 43, 795.
[39] Wu, Z. S.; Zhang, W. M.; Sun, Z. X. Acta Chim. Sinica 2010, 68(8), 769(in Chinese). (吴震生, 张卫民, 孙中溪, 化学学报, 2010, 68(8), 769.)
[40] Davis, J. A.; Kent, D. Rev. Mineral. Geochem. 1990, 23, 177.
[41] Kubicki, J. D.; Paul, K. W.; Kabalan, L.; Zhu, Q.; Mrozik, M. K.; Aryanpour, M.; Pierre-Louis, A. M.; Strongin, D. R. Langmuir 2012, 8, 14573.
[42] Cornell, R. M.; Schwertmann, U. The Iron Oxides:Structure, Properties, Reactions, Occurrences and Uses, John Wiley & Sons, 2003, pp. 221~223.
[43] Pagnanelli, F.; Bornoroni, L.; Toro, L. Environ. Sci. Technol. 2004, 38, 5443.
[44] Liu, T.; Li, X.; Waite, T. D. Environ. Sci. Technol. 2014, 48, 14564.
[45] Liu, T.; Li, X.; Waite, T. D. Environ. Sci. Technol. 2013, 47(13), 7350.
[46] Liu, T.; Li, X.; Waite, T. D. Environ. Sci. Technol. 2013, 47(23), 13712.
[47] Liu, T.; Li, X.; Zhang, W.; Hu, M.; Li, F. J. Colloid Interface Sci. 2014, 423, 25.
[48] Yanina, S. V.; Rosso, K. M. Science 2008, 320(5873), 218.
[49] Janusz, W.; Skwarek, E.; Zarko, V. I.; Gun'ko, V. M. Physicochem. Probl. Miner. Process. 2007, 41, 215.
[50] Pyman, M.; Bowden, J.; Posner, A. Soil Res. 1979, 17, 191.
[51] Yu, T. R.; Ji, G. L.; Ding, C. P. Electrochemical Behavior of Variable Charge Soils, Vol. 2, Eds.:Yu, T. R.; Zhao, A. Z., Science Press, Beijing, 1996, p. 9(in Chinese). (于天仁, 季国亮, 丁昌璞, 可变电荷土壤的电化学, 卷2, 编辑:于天仁, 赵安珍, 科学出版社, 北京, 1996, p. 9.)
/
〈 |
|
〉 |