First Principles Study on the Adsorption of H2 Molecules on Mg3N2 Surface
Received date: 2017-03-16
Online published: 2017-04-25
Supported by
Project supported by the National Natural Science Foundation of China (No.51562022),the State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals,Lanzhou University of Technology (No.SKLAB02014004),Basic scientific Research foundation for Gansu University of China (No.05-0342),Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund (the second phase).
The first principles density theory calculations have been performed to investigate different Mg3N2 surface and the corresponding properties of H2 adsorption.The calculation of surface energy present that Mg3N2(011) is the most stable surface.The result show that the H2 parallel to the surface is a favorable adsorption and the most stable structure is H2 adsorbed onto the Model Ⅱ surface,which have the lowest energy.There are three main modes of chemical adsorption:The first adsorption mode is that H2 is dissociated into two H,and each H connect with N atom respectively to form double NH.This is the best adsorption model,which mainly results from the interaction between the H 1s orbit and N 1s,2p orbits.By the analysis of the charge distribution variation H atom and N atom lose electrons,Mg obtain electrons.The second mode,H2 dissociated partly and the two H are adsorbed onto the same N forming one NH2,forms covalent bond.From the analysis of the bond population,we conclude that the covalent bonds strengthen the structure of NH.In other words,the hydrogen desorption of NH2 is easier than NH.H2 is fully dissociated in the third mode.One H atom is adsorbed onto N forming a NH group,which is connected by covalent bond,while the other H atom is adsorbed onto Mg forming MgH,which is forming ionic bond.The reaction energy barrier show that there is no competition among the three adsorption modes.The model of forming two NH is the easiest pathway,which have the lowest reaction energy barrier of 0.848 eV.The second is that the adsorption of H2 molecules on the surface forming NH2 have the reaction energy barrier of 1.596 eV.The most unlikely adsorption model is that H2 is dissociated and forming the structure of NH+MgH,which have the reaction energy barrier of 5.495 eV.In addition,H2 also can be physically adsorbed onto Mg3N2(011) surface.
Key words: density functional theory; Mg3N2; adsorption; H2
Chen Yuhong , Liu Tingtinga , Zhang Meiling , Yuan Lihua , Zhang Caironga . First Principles Study on the Adsorption of H2 Molecules on Mg3N2 Surface[J]. Acta Chimica Sinica, 2017 , 75(7) : 708 -714 . DOI: 10.6023/A17030107
[1] Yuan, H. P.; Zhou, Z. Y.; Li, Z. N.; Ye, J. H.; Guo, X. M.; Jiang, L. J.; Wang, S. M.; Liu, X. P. Int. J. Hydrogen Energy 2013, 38, 7881.
[2] Li, Z.; Cai, B.; Zhang, J. L.; Lu, F. S. Met. Funct. Mater. 2013, 20, 40(in Chinese). (李增, 蔡波, 张敬霖, 卢凤双, 金属功能材料, 2013, 20, 40.)
[3] Han, S. C.; Lee, P. S.; Lee, J. Y. J. Alloys Compd. 2000, 306, 219.
[4] Miao, H.; Wang, W. G. J. Alloys Compd. 2010, 508, 592.
[5] Yang, X. H.; Xie, Z. M.; He, J.; Yu, L. Chin. J. Org. Chem. 2015, 35, 603(in Chinese). (阳香华, 谢珍茗, 何军, 余林, 有机化学, 2015, 35, 603.)
[6] Tang, C. M.; Wu, J. R.; Wan, Y. M.; Zhang, Z. J.; Kang, J.; Xiang, Y. Y.; Zhu, W. H. Acta Chim. Sinica 2015, 73, 1189(in Chinese). (唐春梅, 邬佳仁, 万一民, 张振俊, 康静, 向圆圆, 朱卫华, 化学学报, 2015, 73, 1189.)
[7] Chen, P.; Xiong, Z.; Luo, J.; Lin, J.; Tan, K. L. Nature 2002, 420, 302.
[8] Chen, P.; Xiong, Z.; Luo, J.; Lin, J.; Tan, K. L. J. Phys. Chem. B 2003, 107, 10967.
[9] Hu, J. J.; Xiong, Z. T.; Wu, G. T.; Chen, P.; Murata, K. J.; Sakata, K. J. Power Sources 2006, 159, 120.
[10] Hu, J. J.; Wu, G. T.; Liu, Y. F.; Xiong, Z. T.; Chen, P. J. Phys. Chem. B 2006, 110, 14688.
[11] Xiong, Z. T.; Hu, J. J.; Wu, G. T.; Chen, P.; Luo, W. F.; Gross, K.; Wang, J. J. Alloys Compd. 2005, 398, 235.
[12] Chen, Y. H.; Zhang, B. W.; Zhang, C. R.; Zhang, M. L.; Kang, L.; Luo, Y. C. Chin. Phys. Lett. 2014, 31, 063101.
[13] Chen, Y. H.; Du, R.; Zhang, Z. L.; Wang, W. C.; Zhang, C. R.; Kang, L.; Luo, Y, C. Acta Phys. Sin. 2011, 60, 086801.
[14] Zhang, C. J.; Alavi, A. J. Phys. Chem. B 2006, l10, 7139.
[15] Wang, Q.; Chen, Y. G.; Zheng, X.; Niu, G.; Wu, C. L.; Tao, M. D. Physica B 2009, 404, 3431.
[16] Wang, Q.; Chen, Y. G.; Gai, J. G.; Wu, C. L.; Tao, M. D. J. Phys. Chem. C 2008, 112, 18264.
[17] Zhang, J.; Huang, Y. N.; Mao, C.; Long, C. G.; Shao, Y. M.; Fu, J. Q.; Peng, P. Acta Chim. Sinica 2010, 68, 2077(in Chinese). (张健, 黄雅妮, 毛聪, 龙春光, 邵毅敏, 付俊庆, 彭平, 化学学报, 2010, 68, 2077.)
[18] Clark, S. J.; Segall, M. D.; Pickard, C. J.; Hasnip, P. J.; Probert, M. I. J.; Refson, K. R.; Payne, M. C. Z. Kristallogr. 2005, 220, 567.
[19] Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865.
[20] Vanderbilt, D. Phys. Rev. B 1990, 41, 7892.
[21] Reckeweg, O.; Disalvo, F. J. Z. Anorg. Allg. Chem. 2001, 627, 371.
[22] Chiou, W. C.; Cartet, E. A. Surf. Sci. 2003, 530, 88.
[23] Alfonso, D. R. Surf. Sci. 2008, 602, 2758.
[24] Pan, C. C.; Chen, Y. H.; Wu, N.; Zhang, M. L.; Yuan, L. H.; Zhang, C. R. Int. J. Hydrogen Energy 2016, 41, 15756.
[25] Kresse, G.; Hanfner, J. Surf. Sci. 2000, 459, 287.
[26] Huda, M. N.; Ray, A. K. Phys. B 2005, 366, 95.
[27] Meng, D. Q.; Luo, W. H.; Li, G.; Chen, H. C. Acta Phys. Sin. 2009, 58, 8224(in Chinese). (蒙大桥, 罗文华, 李赣, 陈虎翅, 物理学报, 2009, 58, 8224.)
[28] Luo, W. H.; Meng, D. Q.; Li, G.; Chen, H. C. Acta Phys. Sin. 2008, 57, 160(in Chinese). (罗文华, 蒙大桥, 李赣, 陈虎翅, 物理学报, 2008, 57, 160.)
[29] Du, R.; Chen, Y. H.; Zhang, Z. L.; Wang, W. C.; Zhang, C. R.; Kang, L.; Luo, Y. C. Acta Chim. Sinica 2011, 69, 1167(in Chinese). (杜瑞, 陈玉红, 张志龙, 王伟超, 张材荣, 康龙, 罗永春, 化学学报, 2011, 69, 1167.)
[30] Govind, N.; Petersen, M.; Fitzgerald, G.; King-Smith, D.; Andzelm, J. Comput. Mater. Sci. 2003, 28, 250.
[31] Mulliken, R. S. J. Chem. Phys. 1955, 23, 1833.
[32] Liang, C.; Liu, Y. F.; Luo, K.; Li, B.; Gao, M. X.; Pan, H. G.; Wang, Q. D. Chem. Eur. J. 2010, 16, 963.
[33] Becke, A. D.; Edgecombe, K. E. J. Chem. Phys. 1990, 92, 5397.
[34] Burdett, J. K.; McCormick, T. A. J. Phys. Chem. A 1998, 102, 6366.
[35] Santis, L. D.; Resta, R. Surf. Sci. 2000, 450, 126.
[36] Tsirelson, V.; Stash, A. Chem. Phys. Lett. 2002, 351, 142.
/
〈 |
|
〉 |