Communication

Palladium/Amino Acid Co-Catalyzed Intramolecular α-Vinylation of Cyclohexanones

  • Li Baole ,
  • Liu Renrong ,
  • Liang Renxiao ,
  • Jia Yixia
Expand
  • College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014

Received date: 2017-02-28

  Online published: 2017-05-09

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21372202, 21502169 and 21522207).

Abstract

Transition-metal-catalyzed α-vinylation of carbonyl compounds represents one of the most important carbon-carbon bond forming approaches to the synthesis of β,γ-unsaturated ketones, which are versatile synthetic building blocks and key structural motifs appearing in biologically active molecules. For this purpose, a number of methods have been developed by utilizing palladium-catalyzed cross-coupling of vinyl halide with C—H bond α- to carbonyl group. However, the elimination of vinyl halides in the presence of strong base would afford alkynes, which remained inert and therefore resulted in lower yields in the cross-coupling reaction. In recent years, cooperative catalysis merging transition metals and organic molecules represents a powerful strategy and renders numerous efficient transformations successful. Among which, palladium/enamine catalysis has emerged as an efficient method for the direct α-functionalization of ketones or aldehydes. We therefore envisaged that a direct cross-coupling of ketones and vinyl halides in the presence of Pd(0)/amine co-catalyst; the need of weak base would avoid the formation of alkynes through elimination of vinyl halides. Herein, we report a palladium/chiral amino acid co-catalyzed intramolecular α-vinylation reaction of cyclohexanones, which delivers a series of bridged ring compounds under mild reaction conditions in good to excellent yields. The resulting unique bridged ring system is analogous to the important morphan scaffold (2-azabicyclo[3.3.1]nonane), which is core structure existing in many important bioactive natural products. In the meantime, asymmetric version of this reaction was also tested and a number of desired products were achieved in moderate enantioselectivities. A representative procedure for this reaction is as following: To a dried Schlenk tube were added compound 1 (0.2 mmol), chiral amines (0.04 mmol, 20 mol%), K3PO4 (0.3 mmol, 1.5 equiv.), Pd(OAc)2 (0.01 mmol, 5 mol%) and PPh3 (0.024 mmol, 12 mol%) under N2, 2.0 mL THF was then introduced via a syringe. The resulting mixture was stirred at 85 ℃ (oil bath) for 72 h until the reaction was complete (monitored by TLC). The solvent was then removed under vacuum and the residue was purified by flash chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:10 (V/V) to afford the desired product.

Cite this article

Li Baole , Liu Renrong , Liang Renxiao , Jia Yixia . Palladium/Amino Acid Co-Catalyzed Intramolecular α-Vinylation of Cyclohexanones[J]. Acta Chimica Sinica, 2017 , 75(5) : 448 -452 . DOI: 10.6023/A17020080

References

[1] (a) Ohtsuka, Y.; Sasahara, T.; Oishi, T. Chem. Pharm. Bull. 1982, 30, 1106 and references therein.
(b) Gohain, M.; Gogoi, B. J.; Prajapati, D.; Sandhu, J. S. New J. Chem. 2003, 27, 1038.
(c) Shi, D.-Q.; Zhang, S.; Zhuang, Q.-Y.; Tu, S.-J.; Hu, H.-W. Chin. J. Org. Chem. 2003, 23, 1036 (in Chinese). (史达清, 张姝, 庄启亚, 屠树江, 胡宏纹, 有机化学, 2003, 23, 1036.)
(d) Comprehensive Organic Functional Group Transformations II, Eds.: Katritzky, A. R.; Taylor, R. J. K., Elsevier, Amsterdam, 2005.
(e) Iwasaki, M.; Morita, E.; Uemura, M.; Yorimitsu, H.; Oshima, K. Synlett 2007, 2007, 167.
(f) Zhou, G.; Yu, L.; Hui, Y.; Xie, Z. Acta Chim. Sinica 2012, 70, 1289 (in Chinese). (周广鹏, 余蕾, 惠永海, 解正峰, 化学学报, 2012, 70, 1289.)
(g) Liu, Y.; Zhou, J. Acta Chim. Sinica 2012, 70, 1451. (in Chinese). (刘运林, 周剑, 化学学报, 2012, 70, 1451.)
[2] Chieffi, A.; Kamikawa, K.; Ahman, J.; Fox, J. M.; Buchwald, S. L. Org. Lett. 2001, 3, 1897.
[3] Huang, J.; Bunel, E.; Faul, M. M. Org. Lett. 2007, 9, 4343.
[4] Lou, S.; Fu, G. C. J. Am. Chem. Soc. 2010, 132, 5010.
[5] (a) Staub, G. M.; Gloer, J. B.; Wicklow, D. T.; Dowd, P. F. J. Am. Chem. Soc. 1992, 114, 1015.
(b) Kan-Fan, C.; Sevenet, T.; Had, H. A.; Bonin, M.; Quirion, J.-C.; Husson, H.-P. Nat. Prod. Lett. 1996, 7, 283.
(c) Kong, F.; Graziani, E. I.; Andersen, R. J. J. Nat. Prod. 1998, 61, 267.
(d) Heathcock, C. H.; Clasby, M.; Griffith, D. A.; Henke, B. R.; Sharp, M. J. Synlett 1995, 1995, 467.
(e) Takayama, H.; Katakawa, K.; Kitajima, M.; Seki, H.; Yamaguchi, K.; Aimi, N. Org. Lett. 2002, 4, 1243.
(f) Bonjoch, J.; Diaba, F. Stud. Nat. Prod. Chem. 2005, 32, 3.
(g) Magnus, P.; Padilla, A. I. Org. Lett. 2006, 8, 3569.
(h) Kobayashi, J.; Kubota, T. Nat. Prod. Rep. 2009, 26, 936.
(i) Rinner, U.; Lentsch, C.; Aichinger, C. Synthesis 2010, 2010, 3763.
(j) Mori, M. Heterocycles 2010, 81, 259.
[6] Solé, D.; Diaba, F.; Bonjoch, J. J. Org. Chem. 2003, 5746.
[7] Piers, E.; Marais, P. C. J. Org. Chem. 1990, 55, 3454.
[8] (a) Shao, Z.; Zhang, H. Chem. Soc. Rev. 2009, 38, 2745.
(b) Zhong, C.; Shi, X. Eur. J. Org. Chem. 2010, 2999.
[9] (a) Ibrahem, I.; Córdova, A. Angew. Chem., Int. Ed. 2006, 45, 1952.
(b) Afewerki, S.; Ibrahem, I.; Rydfjord, J.; Breistein, P.; Córdova, A. Chem. Eur. J. 2012, 18, 2972.
(c) Mukherjee, S.; List, B. J. Am. Chem. Soc. 2007, 129, 11336.
(d) Zhao, X. H.; Liu, D. L.; Guo, H.; Liu, Y. G.; Zhang, W. B. J. Am. Chem. Soc. 2011, 133, 19354.
(e) Wu, H.; He, Y. P.; Gong, L. Z. Adv. Synth. Catal. 2012, 354, 975.
(f) Tao, Z. L.; Zhang, W. Q.; Chen, D. F.; Adele, A.; Gong, L. Z. J. Am. Chem. Soc. 2013, 135, 9255.
(g) Krautwald, S.; Sarlah, D.; Schafroth, M. A.; Carreira, E. M. Science 2013, 340, 1065.
(h) Yoshida, M.; Terumine, T.; Masaki, E.; Hara, S. J. Org. Chem. 2013, 78, 10853.
(i) Krautwald, S.; Schafroth, M. A.; Sarlah, D.; Carreira, E. M. J. Am. Chem. Soc. 2014, 136, 3020.
(j) Huo, X.; Yang, G.; Liu, D.; Liu, Y.; Gridnev, I. D.; Zhang, W. Angew. Chem., Int. Ed. 2014, 53, 6776.
(k) Huo, X.; Quan, M.; Yang, G. Q.; Zhao, X. H.; Liu, D. L.; Liu, Y. G.; Zhang, W. B. Org. Lett. 2014, 16, 1570.
(l) Tang, S.; Wu, X. D.; Liao, W. Q.; Liu, K.; Liu, C.; Luo, S. Z.; Lei, A. W. Org. Lett. 2014, 16, 3584.
(m) Wang, P. S.; Lin, H. C.; Zhai, Y. J.; Han, Z. Y.; Gong, L. Z. Angew. Chem., Int. Ed. 2014, 53, 12218.
(n) Zhou, X. L.; Wang, P. S.; Zhang, D. W.; Liu, P.; Wang, C. M.; Gong, L. Z. Org. Lett. 2015, 17, 5120.
(o) Zhou, H.; Zhang, L.; Xu, C.; Luo, S. Angew. Chem., Int. Ed. 2015, 54, 12645.
[10] Xu, Y.; Su, T.; Huang, Z.; Dong, G. Angew. Chem., Int. Ed. 2016, 55, 2559.
[11] Liu, R.-R.; Li, B.-L.; Lu, J.; Shen, C.; Gao, J.-R.; Jia, Y.-X. J. Am. Chem. Soc. 2016, 138, 5198.

Outlines

/