Adsorption and Stabilization of Lead during Fe(II)-catalyzed Phase Transformation of Ferrihydrite
Received date: 2017-03-06
Online published: 2017-05-09
Supported by
Project supported by the National Natural Science Foundation of China (Nos. 41673135, 41420104007, 41671240), the Science and Technology Project of Guangdong Province (Nos. S2013050014266, 2015A030313752, 2016A030313780; 2016B020242006), and One Hundred Talents Programme of the Chinese Academy of Sciences.
Aqueous Fe(Ⅱ) (Fe(Ⅱ)aq)-catalyzed recrystallization of iron (hydr)oxides is the important chemical reaction of iron cycle in anaerobic environments, which poses significant effects on the environmental behavior of heavy metals in soils and sediments. Ferrihydrite is the initial iron mineral phase during the ferrous mineralization and has relatively unstable crystal structure. The structure transformation behavior of ferrihydrite is active and also poses important effects on environmental behavior of soil heavy metals. However, the Fe(Ⅱ)aq-catalyzed phase transformation of ferrihydrite has been rarely reported, especially with the coexisting metal ions. In the present study, the effects of coexisting heavy metal of Pb(Ⅱ) on the Fe(Ⅱ)aq-catalyzed phase transformation of ferrihydrite coupling the environmental behavior of Pb(Ⅱ) were systematically studied. The results show that ferrihydrite underwent efficient phase transformation rates when catalyzed by Fe(Ⅱ)aq whenever with or without the effect of Pb(Ⅱ). Compared with the reaction system that without Pb(Ⅱ), the adsorption of Fe(Ⅱ) on the surface of ferrihydrite was inhibited due to the competition of Pb(Ⅱ) when with the coexistence of Pb(Ⅱ), which further decreased the rates of Fe atom exchange between Fe(Ⅱ)aq and structural Fe(Ⅲ) of ferrihydrite. With the inhibited Fe atom exchange reaction, the phase transformation rates were relatively decreased and transformation products were changed during the Fe(Ⅱ)aq-catalyzed phase transformation of ferrihydrite. Goethite and magnetite were found to be the final transformed products of iron (hydr)oxides when without Pb(Ⅱ), while lepidocrocite was determined to be the main transformed product with little goethite and magnetite as the other transformed products when with Pb(Ⅱ). During the Fe(Ⅱ)aq-catalyzed phase transformation of ferrihydrite with the coexistence of Pb(Ⅱ), some Pb were stabilized through being incorporated into the structure of ferrihydrite transformed products with the possible mechanisms of occlusion by the crystal lattice and structural incorporation, so as to decrease the activity of the polluted heavy metal of Pb. The obtained results in the present study are expected to provide further insights for understanding the iron cycle coupling with the environmental behavior of heavy metals in soils and sediments.
Liu Chengshuai , Li Fangbai , Chen Manjia , Liao Changzhong , Tong Hui , Hua Jian . Adsorption and Stabilization of Lead during Fe(II)-catalyzed Phase Transformation of Ferrihydrite[J]. Acta Chimica Sinica, 2017 , 75(6) : 621 -628 . DOI: 10.6023/A17030093
[1] Latta, D. E.; Bachman, J. E.; Scherer, M. M. Environ. Sci. Technol. 2012, 46, 10614.
[2] (a) Suter, D.; Siffert, C.; Sulzberger, B.; Stumm, W. Nturwissenschaften 1988, 75, 571. (b) Suter, D.; Banwart, S.; Stumm, W. Langmuir 1991, 7, 809.
[3] (a) Williams, A. G.; Scherer, M. M. Environ. Sci. Technol. 2004, 38, 4782. (b) Pedersen, H. D.; Postma, D.; Jakobsen, R.; Larsen, O. Geochim. Cosmochim. Acta 2005, 69, 3967.
[4] (a) Yanina, S. V.; Rosso, K. M. Science 2008, 320, 218. (b) Rosso, K. M.; Yanina, S. V.; Gorski, C. A.; Larese-Casanova, P.; Scherer, M. M. Environ. Sci. Technol. 2010, 44, 61.
[5] Frierdich, A. J.; Helgeson, M.; Liu, C.; Wang, C.; Rosso, K. M.; Scherer, M. M. Environ. Sci. Technol. 2015, 49, 8479.
[6] (a) Frierdich, A. J.; Catalano, J. G. Environ. Sci. Technol. 2012, 46, 11070. (b) Frierdich, A. J.; Scherer, M. M.; Bachman, J. E.; Engelhard, M. H.; Rapponotti, B. W.; Catalano, J. G. Environ. Sci. Technol. 2012, 46, 10031.
[7] Liu, C. S.; Zhu, Z. K.; Li, F. B.; Liu, T. X.; Liao, C. Z.; Lee, J. J.; Shih, K. M.; Tao, L.; Wu, Y. D. Chem. Geol. 2016, 444, 110.
[8] (a) Jambor, J. L.; Dutrizac, J. E. Chem. Rev. 1998, 98, 2549. (b) Wang, X. M.; Li, W.; Harrington, R.; Liu, F.; Parise, J. B.; Feng, X. H.; Sparks, D. L. Environ. Sci. Technol. 2013, 47, 10322. (c) Liu, J.; Yang, J.; Zeng, X.; Wang, J.; Sparks, D. Acta Chim. Sinica 2017, DOI:10.6023/A17030082. (刘瑾, 杨建军, 曾希柏, Jian Wang, Donald Sparks, 化学学报, 2017, DOI:10.6023/A17030082.); (d) Wang, X.; Peng, J.; Xu, H.; Tan, W.; Liu, F.; Huang, Q.; Feng, X. Acta Chim. Sinica 2017, DOI:10.6023/A17020046. (王小明, 彭晶, 徐欢欢, 谭文峰, 刘凡, 黄巧云, 冯雄汉, 化学学报, 2017, DOI:10.6023/A17020046.)
[9] (a) Cornell, R. M.; Schwertmann, U. The Iron Oxides:Structure, Properties, Reactions, Occurences and Uses, 2nd ed., Wiley-VCH, Weinheim, 2003. (b) Wang, X.; Liu, H.; Wei, Y.; Li, Y.; Zhao, X.; Wang, Y. Acta Chim. Sinica 2008, 66, 685. (王欣, 刘辉, 魏雨, 李彦涛, 赵新强, 王延吉, 化学学报, 2008, 66, 685.); (c) Das, S.; Hendry, M. J.; Essilfie-Dughan, J. Environ. Sci. Technol. 2011, 45, 5557. (d) Wang, X. M.; Zhu, M. Q.; Lan, S.; Ginder-Vogel, M.; Liu, F.; Feng, X. H. Chem. Geol. 2015, 415, 37.
[10] (a) Tronc, E.; Belleville, P.; Jolivet, J. P.; Livage, J. Langmuir 1992, 8(1), 313. (b) Hansel, C. M.; Benner, S. G.; Fendorf, S. Environ. Sci. Technol. 2005, 39(18), 7147.
[11] (a) Stewart, B. D.; Nico, P. S.; Fendorf, S. Environ. Sci. Technol. 2009, 43(13), 4922. (b) Amstaetter, K.; Borch, T.; Larese-Casanova, P.; Kappler, A. Environ. Sci. Technol. 2010, 44(1), 102. (c) Felmy, A. R.; Moore, D. A.; Rosso, K. M.; Qafoku, O.; Rai, D.; Buck, E. C.; Ilton, E. S. Environ. Sci. Technol. 2011, 45(9), 3952.
[12] (a) Schwertmann, U.; Taylor, R. M. Clays Clay Miner. 1972, 20(3), 151. (b) Yang, L.; Steefel, C. I.; Marcus, M. A.; Bargar, J. R. Environ. Sci. Technol. 2010, 44(14), 5469.
[13] Frierdich, A. J.; Catalano, J. G. Environ. Sci. Technol. 2012, 46, 1519.
[14] (a) Wu, Z.; Zhang, W.; Sun, Z. Acta Chim. Sinica 2010, 68, 769. (吴震生, 张卫民, 孙中溪, 化学学报, 2010, 68, 769.); (b) Cao, F.; Wu, Y.; Liu, H.; Wei, Y. Acta Chim. Sinica 2008, 66, 1405. (曹付玲, 吴育飞, 刘辉, 魏雨, 化学学报, 2008, 66, 1405.)
[15] (a) Alvarez, M.; Rueda, E. H.; Sileo, E. E. Geochim. Cosmochim. Acta 2007, 71, 1009. (b) Kaur, N.; Gräfe, M.; Singh, B.; Kennedy, B. Clays Clay Miner. 2009, 57(2), 234.
[16] Jang, J. H.; Dempsey, B. A.; Catchen, G. L.; Burgos, W. D. Colloids Surf., A 2003, 221(1), 55.
[17] Boland, D. D.; Collins, R. N.; Miller, C. J.; Glover, C. J.; Waite, T. D. Environ. Sci. Technol. 2014, 48(16), 9086.
[18] (a) Gorski, C. A.; Handler, R. M.; Beard, B.; Pasakarnis, T.; Johnson, C. M.; Scherer, M. M. Environ. Sci. Technol. 2012, 46, 12399. (b) Liu, C. S.; Wei, Z. Q.; Li, F. B.; Dong, J. Scientia Sinica Terrae 2016, 46, 1542. (刘承帅, 韦志琦, 李芳柏, 董军, 中国科学:地球科学, 2016, 46, 1542.)
[19] (a) Handler, R. M.; Beard, B. L.; Johnson, C. M.; Scherer, M. M. Environ. Sci. Technol. 2009, 43, 1102. (b) Joshi, P.; Gorski, C. A. Environ. Sci. Technol. 2016, 50, 7315.
[20] Handler, R. M.; Frierdich, A. J.; Johnson, C. M.; Rosso, K. M.; Beard, B. L.; Wang, C.; Latta, D. E.; Neumann, A.; Pasakarnis, T.; Premaratne, W. A. P. J.; Scherer, M. M. Environ. Sci. Technol. 2014, 48, 11302.
[21] Reddy, T. R.; Frierdich, A. J.; Beard, B. L.; Johnson, C. M. Chem. Geol. 2015, 397, 118.
[22] Schilt, A. A. Applications of 1,10-Phenanthroline and Related Compounds, 1st ed., Pergamon Press, Oxford, 1969.
[23] Lu, X. W.; Shih, K. M.; Liu, C. S.; Wang, F. Environ. Sci. Technol. 2013, 47, 9972.
[24] Michel, F. M.; Ehm, L.; Antao, S. M.; Lee, P. L.; Chupas, P. J.; Liu, G.; Strongin, D. R.; Schoonen, M. A. A.; Phillips, B. L.; Parise, J. B.; Science 2007, 316, 1726.
[25] (a) De La Torre, A. G.; Bruque, S.; Aranda, M. A. G. J. Appl. Crystallogr. 2001, 34, 196. (b) Bernasconi, A.; Dapiaggi, M.; Gualtieri, A. F. J. Appl. Crystallogr. 2014, 47, 136.
/
| 〈 |
|
〉 |