Research of the Stereoselectivity and Mechanism of the Hydroboration Reaction Between B(C6F5)3/Ammonium Chloride Systems with Terminal Alkyne
Received date: 2017-04-06
Online published: 2017-05-24
Supported by
Project supported by the National Natural Science Foundation of China (No.21542011),Scientific Research Fund of Sichuan Educational Department and Leshan Technology Division (Nos.15ZB0256,Z14GZ010).
Stereoselective hydroboration reaction of alkynes has been considered as one of the most important organic reaction. To date a handful of metal-catalyzed systems have been demonstrated to achieve trans-hydroboration of alkynes. This paper describes the first non-metal-catalyzed systems which could stereoselectively hydroborate the terminal alkynes in a trans-configuration. The Lewis acid B(C6F5)3 and ammonium chloride have been used as the reaction substrates, and phenylsilane as the hydride source. The hydroboration reaction could be performed in a one-pot procedure by mixing of B(C6F5)3, ammonium chloride and silane together in an equivalent amount. But this one-pot reaction is not so nice since there is always mixed with the ammonium hydroborate[R2NH2]+[H-B(C6F5)3]- intermediates products. A series of ammonium hydroborates prepared from the corresponding primary, secondary, tertiary and quaternary amine hydrochlorides have been isolated, and used in the directly hydroboration with terminal alkynes. To our surprise the ammonium hydroborate[R2NH2]+[H-B(C6F5)3]- could not react with the alkynes alone. When using[R2NH2]+[H-B(C6F5)3]- to react with alkynes, trace amount of catalytic Lewis acid B(C6F5)3 is necessary to firstly activate the carbon-carbon triple bonds and form the crucial zwitterionic σ-complexes. The mechanism study has shown that different from the typical Lewis acid/Lewis base FLPs system reacted with alkynes, in this B(C6F5)3/ammonium chloride system the ammonium chloride plays an important role on the stereoselective control of the reaction. The week interaction between the Cl ion and B(C6F5)3 in the σ-complexes has not only slowed down the unfavorite 1,1-carboboration reaction, but also stabilized the σ-complexes which has offer the chance for the nucleophilic reagent to attack the reaction center in a cis-or trans-mode. In our experiment the bulky ion[H-B(C6F5)3]-could only attach the active alkynes from the trans-side and form the Z-hydroboration product. This work demonstrates that the combination of the ammonium halides with the Lewis acid B(C6F5)3 could act as a novel "frustrated Lewis pair" to activate alkynes, and will enable the development of even more sophisticated FLP and related catalyzed reactions.
Key words: ammonium chloride; B(C6F5)3; silane; alkyne; hydroboration
Sun Guofeng , Su Min , Fang Jie , Borzov Maxim , Nie Wanli . Research of the Stereoselectivity and Mechanism of the Hydroboration Reaction Between B(C6F5)3/Ammonium Chloride Systems with Terminal Alkyne[J]. Acta Chimica Sinica, 2017 , 75(8) : 824 -830 . DOI: 10.6023/A17040141
[1] Kropp, M. A.; Baillargeon, M.; Park, K. M.; Ahamidapaty, K.; Schuster, G. B. J. Am. Chem. Soc. 1991, 113, 2155.
[2] Ohmura, T.; Yamamoto, Y.; Miyaura, N. J. Am. Chem. Soc. 2000, 122, 4990.
[3] Gunanathan, C.; Hoelscher, M.; Pan, F.; Leitner, W. J. Am. Chem. Soc. 2012, 134, 14349.
[4] Obligacion, J. V.; Neely, J. M.; Yazdani, A. N.; Pappas, I.; Chirik, P. J. J. Am. Chem. Soc. 2015, 137, 5855.
[5] (a) Jang, W. J.; Lee, W. L.; Moon, J. H.; Lee, J. Y.; Yun, J. Org. Lett. 2016, 18, 1390.
(b) Liu, Y.-Y.; Zhang, W.-B. Chin. J. Org. Chem. 2016, 36(10), 2249. (刘媛媛, 张万斌, 有机化学, 2016, 36(10), 2249.)
[6] Xu, S.-M.; Zhang, Y.-Z.; Li, B.; Liu, S. H.-Y. J. Am. Chem. Soc. 2016, 138(44), 14566.
[7] (a) Chen, J.; Xi, T.; Lu, Z. Org. Lett. 2014, 16, 6452.
(b) He, X.-W.; Hu, X.-Q.; Tao, J.-J.; Han, G.; Shang, Y.-J. Chin. J. Org. Chem. 2016, 36(7), 1465. (何心伟, 胡小倩, 陶佳佳, 韩光, 商永嘉, 有机化学, 2016, 36(7), 1465.)
[8] Bismuto, A.; Thomas, S. P.; Cowley, M. J. Angew. Chem., Int. Ed. 2016, 55, 15356.
[9] Welch, G. C.; San Juan, R. R.; Masuda, J. D.; Stephan, D. W. Science 2006, 314, 1124.
[10] Welch, G. C.; Stephan, D. W. J. Am. Chem. Soc. 2007, 129, 1880.
[11] Chen, D.-J.; Wang, Y.; Klankermayer, J. Angew. Chem., Int. Ed. 2010, 49, 9475.
[12] Stephan, D. W.; Erker, G. Angew. Chem., Int. Ed. 2010, 49, 46.
[13] Stephan, D. W. Acc. Chem. Res. 2015, 48, 306.
[14] Chen, C.; Kehr, G..; Fröhlich, R.; Erker, G. J. Am. Chem. Soc. 2010, 132, 13594.
[15] Chen, C.; Voss, T.; Fröhlich, R.; Kehr, G.; Erker, G. Org. Lett. 2011, 13, 62.
[16] Jiang, C.; Blacque, O.; Berke, H. Organometallics 2010, 29, 125.
[17] Reddy, J. S.; Xu, B.-H.; Mahdi, T.; Fröhlich, R.; Kehr, G.; Stephan, D. W.; Erker, G. Organometallics 2012, 31, 5638.
[18] Nie, W.-L.; Klare, H. F. T.; Oestreich, M.; FrÖhlich, R.; Kehr, G.; Erker, G. Z. Naturforsch. 2012, 67b, 987.
[19] Xu, Y.-Y.; Li, Z.; Borzov, M.; Nie, W.-L. Chem. Prog. 2012, 24(8), 1526. (徐莹莹, 李钊, Borzov, Maxim, 聂万丽, 化学进展, 2012, 24(8), 1526.)
[20] Tian, C.; Jiang, Y.; Borzov, M.; Nie, W.-L. Acta Chim. Sinica 2015, 73, 1203. (田冲, 姜亚, Borzov, Maxim, 聂万丽, 化学学报, 2015, 73, 1203).
[21] Hu, X.; Tian, C.; Jiang, Y.; Borzov, M.; Nie, W.-L. Acta Chim. Sinica 2015, 73, 1025. (胡茜, 田冲, Borzov, Maxim, 聂万丽, 化学学报, 2015, 73, 1025.)
[22] Wen, Z.-G.; Tian, C.; Jiang, Y.; Borzov, M.; Nie, W.-L. Acta Chim. Sinica 2016, 74, 498(温志国, 田冲, Borzov, Maxim, 聂万丽, 化学学报, 2016, 74, 498.)
[23] E-Stereospecific 1, 1-carboboration of terminal arylalkynes with[I-B(C6F5)3], 待发.
[24] Nie, W.-L.; Sun, G.-F.; Tian, C.; Borzov, M. Naturforsch. 2016, 71(10)b, 1029.
[25] Detailed experimental procedures, characterization and X-ray data are available from the Supporting Information. (一些有代表性的氯代硼胺盐及炔烃硼氢化胺盐的合成、结构及X-射线单晶结构详见支持信息.)
/
〈 |
|
〉 |