Electron Transport Pathways Through One-Dimensional Conjugated Carbon Chain Doped by Thiophene Ring
Received date: 2017-05-03
Online published: 2017-06-15
Represented by graphene and carbon nanotubes, one-dimensional (1D) conjugated carbon materials are potential ones to be used in molecular electronic devices. The further application of 1D conjugated carbon materials in optoelectronic devices requires that they have electron-poor/electron-rich characteristics, with the premise of high conductivity. Most of 1D conjugated carbon materials are constructed by aromatic rings as the basic units. Substitutional S atoms into benzene ring is an effective method to achieve electron doping into 1D conjugated carbon materials. Herein, to simulate the doping effect of 1D conjugated carbon materials, a series of oligobenzo[1,2-b:4,5-b'] dithiophene (BmT) and oligothiophene (TnP) molecules were designed by substitutional doping thiophene ring into conjugated carbon skeleton. The influence of doping position and concentration on the electron transport properties were studied based on the nonequilibrium Green's function approach and density functional theory. Static electronic properties indicate that HOMO orbitals have higher delocalization on trans-configurations of BmT and TnP molecules as compared with cis-conjugations, indicating the higher conductivity of trans-BmT and trans-TnP. Dynamic transport behaviors demonstrate that the substitutional doping of thiophene rings can significantly improve the electron transport efficiency of carbon skeleton. The conductance trend of BmT and TnP molecules indicates that the electron transport efficiency through the compounds is dependent on their conjugation. The conductance of BmT and TnP molecules are not only dependent to the chain length, but also related to the energy gaps and electron transport pathways. Trans-BmT and trans-TnP are conjugated molecules with multiple pathways, however, cis-BmT and cis-TnP are conjugated molecules that can transform from a single pathway to multiple pathways, with the increase of chain length. The diversity of the electron transport behaviors of the thiophene-doped carbon skeletons is directly dominated by the electron transport pathways. Our work gives insight into the development of novel carbon-based molecular optoelectronic materials with high performance.
He Yuanyuan , Cheng Na , Zhao Jianwei . Electron Transport Pathways Through One-Dimensional Conjugated Carbon Chain Doped by Thiophene Ring[J]. Acta Chimica Sinica, 2017 , 75(9) : 893 -902 . DOI: 10.6023/A17050195
[1] Alahbakhshi, M.; Fallahi, A.; Mohajerani, E.; Fathollahi, M. R.; Taromi, F. A.; Shahinpoor, M. Opt. Mater. 2017, 64, 366.
[2] Wu, Q.; Yang, L. J.; Wang, X. Z.; Hu, Z. Acc. Chem. Res. 2017, 50, 435.
[3] Park, J.; Kim, Y. S.; Sung, S. J.; Kim, T.; Park, C. R. Nanoscale 2017, 9, 1699.
[4] Deng, Y. C.; Cranford, S. W. Comp. Mater. Sci. 2017, 129, 226.
[5] Zhao, L.; Cao, D. P.; Gao, Z. Q.; Mi, B. X.; Huang, W. Chin. J. Chem. 2015, 33, 828.
[6] Lai, Y. J.; Bai, J.; Zhu, W.; Xian, Y. Z.; Jin, L. T. Chin. J. Chem. 2013, 31, 221.
[7] Wu, N.; Wang, C.; Bunes, B. R.; Zhang, Y. Q.; Slattum, P. M.; Yang, X. M.; Zang, L. ACS Appl. Mater. Inter. 2016, 8, 12360.
[8] Sarkar, A.; Itkis, M. E.; Tham, F. S.; Haddon, R. C. Chem.-Eur. J. 2011, 17, 11576.
[9] Gutzler, R.; Perepichka, D. F. J. Am. Chem. Soc. 2013, 135, 16585.
[10] Zhou, P.; He, D. W. Chin. J. Chem. 2016, 34, 795.
[11] Tong, Z. K.; Fang, S.; Zheng, H.; Zhang, X. G. Acta Chim. Sinica 2016, 74, 185 (in Chinese). (童震坤, 方姗, 郑浩, 张校刚, 化学学报, 2016, 74, 185.)
[12] Huo, L. J.; Zhang, S. Q.; Guo, X.; Xu, F.; Li, Y. F.; Hou, J. H. Angew. Chem., Int. Ed. 2011, 50, 9697.
[13] Zhang, M. J.; Guo, X.; Zhang, S. Q.; Hou, J. H. Adv. Mater. 2014, 26, 1118.
[14] Bronstein, H.; Chen, Z. Y.; Ashraf, R. S.; Zhang, W. M.; Du, J. P.; Durrant, J. R.; Tuladhar, P. S.; Song, K.; Watkins, S. E.; Geerts, Y.; Wienk, M. M.; Janssen, R. A. J.; Anthopoulos, T.; Sirringhaus, H.; Heeney, M.; McCulloch, I. J. Am. Chem. Soc. 2011, 133, 3272.
[15] Hendriks, K. H.; Heintges, G. H. L.; Gevaerts, V. S.; Wienk, M. M.; Janssen, R. A. J. Angew. Chem. Int. Ed. 2013, 52, 8341.
[16] Ou, J. K.; Yang, L.; Xi, X. H. Chin. J. Chem. 2016, 34, 727.
[17] Ou, J. K.; Yang, L.; Zhang, Y. Z.; Chen, L.; Guo, Y.; Xiao, D. Chin. J. Chem. 2016, 33, 1293.
[18] Lyu, Z. Y.; Feng, R.; Zhao, J.; Fan, H.; Xu, D.; Wu, Q.; Yang, L. J.; Chen, Q.; Wang, X. Z.; Hu, Z. Acta Chim. Sinica 2015, 73, 1013 (in Chinese). (吕之阳, 冯瑞, 赵进, 范豪, 徐丹, 吴强, 杨立军, 陈强, 王喜章, 胡征, 化学学报, 2015, 73, 1013.)
[19] Jin, Z.; Yao, J.; Kittrell, C.; Tour, J. M. ACS Nano 2011, 5, 4112.
[20] Tang, Y.-B.; Yin, L.-C.; Yang, Y.; Bo, X.-H.; Cao, Y.-L.; Wang, H.-E.; Zhang, W.-J.; Bello, I.; Lee, S.-T.; Cheng, H.-M. ACS Nano 2012, 6, 1970.
[21] Gu, X. X.; Zhang, S. Q.; Hou, Y. L. Chin. J. Chem. 2016, 34, 11.
[22] Liu, D. H.; Zhang, C.; Lv, X. H.; Zheng, X. Y.; Zhang, L.; Zhi, L. J.; Yang, Q. H. Chin. J. Chem. 2016, 34, 41.
[23] Ma, Y. S.; Shi, Z. Q.; Zhang, A. D.; Li, J. F.; Wei, X. F.; Jiang, T. Y.; Li, Y. A.; Wang, X. L. Dyes Pigm. 2016, 135, 41.
[24] Cui, Y. J.; Wang, Y. X.; Wang, H.; Cao, F.; Chen, F. Y. Chin. J. Catal. 2016, 37, 1899.
[25] Stepień, M.; Gońka, E.; Zyla, M.; Sprutta, N. Chem. Rev. 2017, 117, 3479.
[26] Oshima, H.; Fukazawa, A.; Sasamori, T.; Yamaguchi, S. Angew. Chem., Int. Ed. 2015, 54, 7636.
[27] Hariharan, R. M.; Thiruvadigal, D. J. J. Mater. Sci.-Mater. El. 2017, 28, 601.
[28] Rai, N.; Siepmann, J. I. J. Phys. Chem. B 2007, 111, 10790.
[29] Wan, G.; Fu, Y. A.; Guo, J. N.; Xiang, Z. H. Acta Chim. Sinica 2015, 73, 557 (in Chinese). (万刚, 付宇昂, 郭佳宁, 向中华, 化学学报, 2015, 73, 557.)
[30] Ono, Y.; Sasaki, F.; Yanagi, H. Mol. Cryst. Liq. Cryst. 2016, 629, 229.
[31] Xie, Y. T.; Ouyang, S. H.; Wang, D. P.; Lee, W. Y.; Bao, Z. A.; Matthews, J. R.; Niu, W. J.; Bellman, R. A.; He, M. Q.; Fong, H. H. Org. Electron. 2015, 20, 55.
[32] Dong, F. X.; Ding, R.; Hotta, S.; Li, A. W. Opt. Commun. 2017, 392, 247.
[33] Zhu, H. Y.; Huang, W.; Huang, Y. L.; Wang, W. Z. Acta Chim. Sinica 2016, 74, 429 (in Chinese). (朱昊云, 黄威, 黄宇立, 汪伟志, 化学学报, 2016, 74, 429.)
[34] Zhu, M. M.; Li, W. S.; Xu, P. P.; Shi, J. J.; Shao, S.; Zhu, X. S.; Guo, Y. T.; He, Y. W.; Hu, Z.; Yu, H. T.; Zhu, Y. A.; Perepichka, I. F.; Meng, H. Sci. China Chem. 2017, 60, 63.
[35] Geng, H.; Hu, Y. B.; Shuai, Z. G.; Gao, H. J.; Chen, K. Q. J. Phys. Chem. C 2007, 111, 19098.
[36] Li, S.; Yang, Z. D.; Zhang, G. L.; Zeng, X. C. J. Mater. Chem. C 2015, 3, 9637.
[37] Zhou, Y. H.; Chen, C. Y.; Li, B. L.; Chen, K. Q. Carbon 2015, 95, 503.
[38] Kuang, G. W.; Chen, S. Z.; Wang, W. H.; Lin, T.; Chen, K. Q.; Shang, X. S.; Liu, P. N.; Lin, N. J. Am. Chem. Soc. 2016, 138, 11140.
[39] Mohajeri, A.; Shahsavar, A. J. Mater. Sci. 2017, 52, 5366.
[40] Marinelli, D.; Fasano, F.; Najjari, B.; Demitri, N.; Bonifazi, D. J. Am. Chem. Soc. 2017, 139, 5503.
[41] Yu, Z.; Dang, Z.; Ke, X. Z.; Cui, Z. Acta Phys. Sinica 2016, 65, 248103 (in Chinese). (禹忠, 党忠, 柯熙政, 崔真, 物理学报, 2016, 65, 248103.)
[42] Xu, Y. Y.; Kan, Y. H.; Wu, J.; Tao, W.; Su, Z. M. Acta Phys. Sinica 2013, 62, 083101 (in Chinese). (徐莹莹, 阚玉和, 武洁, 陶委, 苏忠民, 物理学报, 2013, 62, 083101.)
[43] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P. Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr.; J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revison B. 1, Gaussian, Inc,. Wallingford, CT, Inc., 2009.
[44] Atomistix ToolKit; QuantumWise A/S, http: //www. quan-tumwise. com.
[45] Datta, S. Electronic Transport in Mesoscopic Systems, Cambridge University Press, New York, 1997, p. 377.
[46] Meir, Y.; Wingreen, N. S. Phys. Rev. Lett. 1992, 68, 2512.
[47] Liu, H. M.; Wang, N.; Zhao, J. W.; Guo, Y.; Yin, X.; Boey, F. Y. C.; Zhang, H. ChemPhysChem 2008, 9, 1416.
[48] Liu, H. M.; Yu, C.; Gao, N. Y.; Zhao, J. W. ChemPhysChem 2010, 11, 1895.
[49] Baer, R.; Neuhauser, D. J. Am. Chem. Soc. 2002, 124, 4200.
[50] Walter, D.; Neuhauser, D.; Baer, R. Chem. Phys. 2004, 299, 139.
[51] Cardamone, D. M.; Stafford, C. A.; Mazumdar, S. Nano Lett. 2007, 7, 2422.
[52] Ke, S. H.; Yang, W. T.; Baranger, H. U. Nano Lett. 2008, 8, 3257.
[53] Baer, R.; Neuhauser, D. Chem. Phys. 2002, 281, 353.
[54] Wang, N.; Liu, H.; Zhao, J.; Cui, Y.; Xu, Z.; Ye, Y.; Kiguchi, M.; Murakoshi, K. J. Phys. Chem. C 2009, 113, 7416.
[55] Liu, H.; Ni, W.; Zhao, J.; Wang, N.; Guo, Y.; Taketsugu, T.; Kiguchi, M.; Murakoshi, K. J. Chem. Phys. 2009, 130, 244501.
[56] Solomon, G. C.; Herrmann, C.; Vura-Weis, J.; Wasielewski, M. R.; Ratner, M. A. J. Am. Chem. Soc. 2010, 132, 7887.
/
〈 |
|
〉 |