Recent Progress on Direct Trifluoromethylthiolating Reagents and Methods
Received date: 2017-05-09
Online published: 2017-08-16
Supported by
Project supported by the National Natural Science Foundation of China (Nos.21625206,21632009,21372247,21572258,21572259,21421002) and the Strategic Priority Research Program of the Chinese Academy of Sciences (No.XDB20000000).
With a significantly high Hansch's hydrophobicity parameter (π=1.44), electron-withdrawing trifluoromethylthio group (CF3S-) has been considered as one of the most lipophilic substituents and privileged fragments that are able to improve drug molecules' pharmacokinetic and physicochemical properties such as lipophilicity and metabolic stability. It is well-known that incorporation of the trifluoromethylthio group into small molecules greatly enhances its ability to cross lipid membranes and in vivo absorpotion rate. In addition, the high electronegativity of the trifluoromethylthio group significantly improves the small molecule's stablity in acidic environments. Not surprisingly, the trifluoromethylthio group has been of special attention not only from the academia but also from pharmaceutical and agrochemical industry for their use in isostere-based drug design. Development of highly efficient methods for the introduction of the trifluoromethylthio group into small molecules, thereafter, has become a subject of recent focus in the field of organic chemistry. In the early 1960s, a few methods for the formation of trifluoromethylthioethers were reported, which typically involved halogen exchange of the trichloromethyl-substituted compounds and trifluoromethylation of thiolated substrates. However, the conditions of these methods were harsh and incompatible with many common functional groups. Since 2008, new reagents and methods that were able to efficiently incorporate the trifluoromethylthio group under mild conditions have emerged, that pave the way for the facile introduction of trifluoromethylthio group into site-specific positions of the target molecules. In this review, we will first briefly introduce the indirect strategies for trifluoromethylthiolation including halogen exchange and trifluoromethylation of thiolated substrates, and then focus on the direct trifluoromethylthiolation strategies including the transition metal-catalyzed trifluoromethylthiolation reactions, electrophilic trifluoromethylthiolation reactions with electrophilic trifluoromethylthiolating reagents and radical trifluoromethylthiolations. These methods represent the most straightforward and promising approaches for the incorporation of the trifluoromethylthio group into small molecules. At the end, we will discuss the remaining problems and challenges in this particular field.
Zhang Panpan , Lu Long , Shen Qilong . Recent Progress on Direct Trifluoromethylthiolating Reagents and Methods[J]. Acta Chimica Sinica, 2017 , 75(8) : 744 -769 . DOI: 10.6023/A17050202
[1] 《 2016研究前沿》.
[2] (a) Leo, A.; Hansch, C.; Elkins, D. Chem. Rev. 1971, 71, 525.
(b) Hansch, C.; Leo, A.; Taft, R. W. Chem. Rev. 1991, 91, 165.
[3] (a) Boiko, V. N. Beilstein J. Org. Chem. 2010, 6, 880.
(b) Liang, T.; Neumann, C. N.; Ritter, T. Angew. Chem. Int. Ed. 2013, 52, 8214.
(c) He, W.-M.; Weng, Z.-Q. Prog. Chem. 2013, 25, 1071(in Chinese). (何伟明, 翁志强, 化学进展, 2013, 25, 1071).
(d) Fang, L. Huaxue Tongbao, 2014, 77, 1058(in Chinese). (方玲, 化学通报, 2014, 77, 1058).
(e) Liu, Z.-J.; Liu, P.; Wu, F.-H. J. Shanghai Instit. of Tech.(Nat. Sci.). 2014, 14, 93.
(f) Toulgoat, F.; Alazet, S.; Billard, T. Eur. J. Org. Chem. 2014, 2415.
(g) Chu, L.-L.; Qing, F.-L. Acc. Chem. Res. 2014, 47, 1513.
(h) Shao, X.-X.; Xu, C.-F.; Lu, L.; Shen, Q.-L. Acc. Chem. Res. 2015, 48, 1227.
(i) Xu, X. H.; Matsuzaki, K.; Shibata, N. Chem. Rev. 2015, 115, 731.
(j) Zhang, K.; Xu, X.-H.; Qing, F.-L. Chin. J. Org. Chem. 2015, 35, 556(in Chinese). (张柯, 徐修华, 卿凤翎, 有机化学, 2015, 35, 556).
(k) Yang, X.-Y.; Wu, Tao.; Phipps, R. J.; Toste, F. D. Chem. Rev. 2015, 115, 826.
(l) Lin, J.-H.; Ji, Y.-L.; Xiao, J.-C. Current Org. Chem. 2015, 19, 1541.
(m) Chachignon, H.; Cahard, D. Chin. J. Chem. 2016, 34, 445.
(n) Zheng, H.-D.; Huang, Y.-J.; Weng, Z.-Q. Tetrahedron Lett. 2016, 57, 1397.
(o) Guo, Y.; Huang, M.-W.; Fu, X.-L.; Liu, C.; Chen, Q.-Y.; Zhao, Z.-G.; Zeng, B.-Z.; Chen, J. Chin. Chem. Lett. 2017, 28, 719.
(p) Li, G.-M.; Sun, D.-Q. Chin. J. Org. Chem. 2016, 36, 1715(in Chinese). (李恭铭, 孙德群, 有机化学, 2016, 36, 1715).
[4] (a) Fluorverbindungen, U. Angew. Chem. 1939, 52, 457.
(b) Yagupolski, L. M.; Marenets, M. S. J. Gen. Chem. U.S.S.R. 1954, 24, 885.
[5] (a) Ruppert, I.; Schlich, K.; Volbach, W. Tetrahedron Lett. 1984, 25, 2195.
(b) Kolomeitsev, A. A.; Movchun, V. N.; Kondranenko, N. V.; Yagupolski, Y. L. Synthesis 1990, 1151.
(c) Shono, T.; IShifune, M.; Okada, T.; Kashimura, S. J. Org. Chem. 1991, 56, 2.
(d) Billard, T.; Large, S.; Langlois, B. R. Tetrahedron Lett. 1997, 38, 65.
(e) Singh, R. P.; Cao, G.; Kirchmeier, R. L.; Shreeve, J. J. Org. Chem. 1999, 64, 2873.
(f) Folleas, B.; Marek, I.; Normant, J. F.; Saint-Jalmes, L. Tetrahedron 2000, 56, 275.
(g) Large, S.; Roques, N.; Langlois, B. R. J. Org. Chem. 2000, 65, 8848.
(h) Billard, T.; Langlois, B. R.; Blond, G. Eur. J. Org. Chem. 2001, 1467.
(i) Steensma, R. W.; Galabi, S.; Tagat, J. R.; McCombie, S. W. Tetrahedron Lett. 2001, 42, 2281.
(j) Potash, S.; Rozen, S. J. Fluorine Chem. 2014, 168, 173.
[6] (a) Yagupolski, L. M.; Kondranenko, N. V.; Timofeeva, G. N. Zh. Org. Khim. 1984, 20, 115.
(b) Umemoto, T. Chem. Rev. 1996, 96, 1757.
(c) Yang, J. J.; Kirchmeier, R. L.; Shreeve, J. J. Org. Chem. 1998, 63, 2656.
(d) Eisenberger, P.; Gischig, S.; Togni, A. Chem. Eur. J. 2006, 12, 2579.
(e) Kieltsch, I.; Eisenberger, P.; Togni, A. Angew. Chem. Int. Ed. 2007, 46, 754.
(f) Koller, R.; Stanek, K.; Stolz, D.; Ardoom, R.; Niedermann, K.; Togni, A. Angew. Chem. Int. Ed. 2009, 48, 4332.
[7] (a) Boiko, V. N.; Shchupak, G. M.; Yagupolski, L. M. Zh. Org. Khim. 1977, 13, 1057.
(b) Popov, I.; Boiko, V. N.; Kondranenko, N. V.; Sambur, V. P.; Yagupolski, L. M. 1977, 13, 2135.
(c) Boiko, V. N.; Dashevskaya, T. A.; Shchupak, G. M.; Yagupolski, L. M. Zh. Org. Khim. 1979, 15, 396.
[8] Man, E. H.; Coffman, D. D.; Muetterties, E. L. J. Am. Chem. Soc. 1959, 81, 3575.
[9] Emeleus, H. J.; MacDuffie, D. E. J. Am. Chem. Soc. (Resumed) 1961, 83, 2572.
[10] Yagupolskii, L. M.; Kondratenko, N. V.; Sambur, V. P. Synthesis 1975, 1975, 721.
[11] Tyrra, W.; Naumann, D.; Hoge, B.; Yagupolskii, Y. L. J. Fluorine Chem. 2003, 119, 101.
[12] Remy, D. C.; Rittle, K. E.; Hunt, C. A.; Freedman, M. B. J. Org. Chem. 1976, 41, 1644.
[13] Kondratenko, N. V.; Kolomeytsev, A. A.; Popov, V. I.; Yagupolskii, L. M. Synthesis 1985, 667.
[14] Chen, Q.-Y.; Duan, J.-X. J. Chem. Soc., Chem. Commun. 1993, 918.
[15] Clark, J. H.; Tavener, S. J. J. Fluorine Chem. 1997, 85, 169.
[16] Teverovskiy, G.; Surry, D. S.; Buchwald, S. L. Angew. Chem. Int. Ed. 2011, 50, 7312.
[17] Zhang, C.-P.; Vicic, D. A. J. Am. Chem. Soc. 2012, 134, 183.
[18] Yin, G.; Kalvet, I.; Englert, U.; Schoenebeck, F. J. Am. Chem. Soc. 2015, 137, 4164.
[19] Yin, G.; Kalvet, I.; Schoenebeck, F. Angew. Chem. Int. Ed. 2015, 54, 6809.
[20] Dürr, A. B.; Yin, G.; Kalvet, I.; Napoly, F.; Schoenebeck, F. Chem. Sci. 2016, 7, 1076.
[21] Nguyen, T.; Chiu, W.-L.; Wang, X.-Y.; Sattler, M. O.; Love, J. A. Org. Lett. 2016, 18, 5492.
[22] Chen, C.; Xie, Y.; Chu, L.-L.; Wang, R.-W.; Zhang, X.; Qing, F. -L. Angew. Chem. Int. Ed. 2012, 51, 2492.
[23] Chen, C.; Chu, L.-L.; Qing, F.-L. J. Am. Chem. Soc. 2012, 134, 12454.
[24] Zhang, C.-P.; Vicic, D. A. Chem. Asian J. 2012, 7, 1756.
[25] Zhai, L.-J.; Li, Y.-M.; Yin, J.; Jin, K.; Zhang, R.; Fu, X.-M.; Duan, C.-Y. Tetrahedron 2013, 69, 10262.
[26] Zhao, M.-Z.; Zhao, X.-M.; Zheng, P.-R.; Tian, Y.-W. J. Fluorine Chem. 2017, 194, 73.
[27] Wu, W.; Wang, B.-Y.; Ji, X.-F.; Cao, S. Org. Chem. Front. 2017, DOI:10.1039/c7qo00198c.
[28] Chen, C.; Xu, X.-H.; Yang, B.; Qing, F.-L. Org. Lett. 2014, 16, 3372.
[29] Yin, W.; Wang, Z.; Huang, Y. Adv. Synth. Catal. 2014, 356, 2998.
[30] Liu, X.-G.; Li, Q.-J.; Wang, H.-G. Adv. Synth. Catal. 2017, 359, 1942.
[31] Munavalli, S.; Rossman, D. I.; Rohrbaugh, D. K.; Ferguson, C. P.; Hsu, F. L. Heteroat. Chem. 1992, 3, 189.
[32] Rheingold, A. L.; Munavalli, S.; Rossman, D. I.; Ferguson, C. P. In-org. Chem. 1994, 33, 1723.
[33] Weng, Z.-Q.; He, W.; Chen, C.; Lee, R.; Tan, D.; Lai, Z.; Kong, D.; Yuan, Y.; Huang, K.-W. Angew. Chem. Int. Ed. 2013, 52, 1548.
[34] Wang, Z.; Tu, Q.; Weng, Z.-Q. J. Organomet. Chem. 2014, 751, 830.
[35] Yang, Y.; Xu, L.; Yu, S.; Liu, X.; Zhang, Y.; Vicic, D. A. Chem. Eur. J. 2016, 22, 858.
[36] Zhang, M.; Weng, Z.-Q. Adv. Synth. Catal. 2016, 358, 386.
[37] (a) Kong, D.; Jiang, Z.; Xin, S.; Bai, Z.; Yuan, Y.; Weng, Z.-Q. Tetrahedron 2013, 69, 6046.
(b) Huang, Y.; He, X.; Li, H.; Weng, Z.-Q. Eur. J. Org. Chem. 2014, 2014, 7324.
(c) Lin, Q.; Chen, L.; Huang, Y.; Rong, M.; Yuan, Y.; Weng, Z.-Q. Org. Biomol. Chem. 2014, 12, 5500.
[38] (a) Zhu, P.; He, X.; Chen, X.; You, Y.; Yuan, Y.; Weng, Z.-Q. Tetrahedron 2014, 70, 672.
(b) Huang, Y.; Ding, J.; Wu, C.; Zheng, H.; Weng, Z.-Q. J. Org. Chem. 2015, 80, 2912.
[39] Zhang, M.; Chen, J.; Chen, Z.; Weng, Z.-Q. Tetrahedron 2016, 72, 3525.
[40] Kondratenko, N. V.; Sambur, V. P. Ukr. Khim. Zh. (Russ. Ed.) 1975, 41, 516.
[41] Adams, D. J.; Goddard, A.; Clark, J. H.; Macquarrie, D. J. Chem. Commun. 2000, 46, 987.
[42] Danoun, G.; Bayarmagnai, B.; Gruenberg, M. F.; Goossen, L. J. Chem. Sci. 2014, 5, 1312.
[43] (a) Hu, M.; Rong, J.; Miao, W.; Ni, C.; Han, Y.; Hu, J.-B. Org. Lett. 2014, 16, 2030.
(b) Wang, X.; Zhou, Y.; Ji, G.; Wu, G.; Li, M.; Zhang, Y.; Wang, J.-B. Eur. J. Org. Chem. 2014, 3093.
[44] Lefebvre, Q.; Fava, E.; Nikolaienko, P.; Rueping, M. Chem. Commun. 2014, 50, 6617.
[45] Matheis, C.; Krause, T.; Bragoni, V.; Goossen, L. J. Chem. Eur. J. 2016, 22, 12270.
[46] Nikolaienko, P.; Pluta, R.; Rueping, M. Chem. Eur. J. 2014, 20, 9867.
[47] Liu, J.-B.; Xu, X.-H.; Chen, Z.-H.; Qing, F.-L. Angew. Chem. Int. Ed. 2015, 54, 897.
[48] Qiu, Y.-F.; Song, X.-R.; Li, M.; Zhu, X.-Y.; Wang, A.-Q.; Yang, F.; Han, Y.-P.; Zhang, H.-R.; Jin, D.-P.; Li, Y.-X.; Liang, Y.-M. Org. Lett. 2016, 18, 1514.
[49] Ye, K.-Y.; Zhang, X.; Dai, L.-X.; You, S.-L. J. Org. Chem. 2014, 79, 12106.
[50] Zeng, J.-L.; Chachignon, H.; Ma, J.-A.; Cahard, D. Org. Lett. 2017, 19, 1974.
[51] Nikolaienko, P.; Yildiz, T.; Rueping, M. Eur. J. Org. Chem. 2016, 1091.
[52] Fang, W.-Y.; Dong, T.; Han, J.-B.; Zha, G.-F.; Zhang, C.-P. Org. Biomol. Chem. 2016, 14, 11502.
[53] Wang, K.-P.; Yun, S.-Y.; Mamidipalli, P.; Lee, D. Chem. Sci. 2013, 4, 3205.
[54] Karmakar, R.; Mamidipalli, P.; Salzman, R. M.; Hong, S.; Yun, S. -Y.; Guo, W.; Xia, Y.; Lee, D. Org. Lett. 2016, 18, 3530.
[55] Xiao, Q.; Sheng, J.; Ding, Q.; Wu, J. Eur. J. Org. Chem. 2014, 217.
[56] Zeng, Y. W.; Hu, J.-B. Org. Lett. 2016, 18, 856.
[57] Li, S.-G.; Zard, S. Z. Org. Lett. 2013, 15, 5898.
[58] Yang, H.-B.; Fan, X.; Wei, Y.; Shi, M. Org. Chem. Front. 2015, 2, 1088.
[59] Fan, X.; Yang, H.; Shi, M. Adv. Synth.Catal. 2017, 359, 49.
[60] (a) Andreades, S.; Harris, J. F.; Sheppard, W. A. J. Org. Chem. 1964, 29, 898.
(b) Sheppard, W. A. J. Org. Chem. 1964, 29, 895;
(c) Scribner, R. M. J. Org. Chem. 1966, 31, 3671.
(d) Bayreuther, H.; Haas, A. Chem. Ber. 1973, 106, 1418.
(e) Croft, T. S.; McBrady, J. J. J. Heterocycl. Chem. 1975, 12, 845.
(f) Haas, A.; hellwig, V. Chem. Ber. 1976, 109, 2475.
(g) Haas, A.; Niemann, U. Chem. Ber. 1977, 110, 67.
(h) Popov, V. I.; Kondranenko, N. V.; Haas, A. UKr. Khim. Zh. 1983, 49, 861.
(i) Haas, A.; Lieb, M.; Zhang, Y. J. Fluorine Chem. 1985, 29, 311;
(j) Bogdanowicz-Szwed, K.; Kawalek, B.; Lieb, M. J. Fluorine Chem. 1987, 35, 317.
(k) Rossman, D. I.; Muller, A. J.; Lewis, E. O. J. Fluorine Chem. 1991, 55, 221.
[61] (a) Sharpe, T. R.; Cherkofsky, S. C.; Hewes, W. E.; Smith, D. H.; Gregory, W. A.; Haber, S. B.; Leadbetter, M. R.; Whitney, J. G. J. Med. Chem. 1985, 28, 1188.
(b) South, M. S.; Van Sant, K. A. J. Heterocycl. Chem 1991, 28, 1017.
(c) Boese, R.; Haas, A.; Lieb, M.; Roeske, U. Chem. Ber. 1994, 127, 449.
[62] Tran, L. D.; Popov, I.; Daugulis, O. J. Am. Chem. Soc. 2012, 134, 18237.
[63] CF3SCl was reported to have an L(ct)50 of between 440 and 880 ppm/min and CF3SSCF3 was reported to have an L(ct)50 of about 200 ppm/min. Chem. Eng. News 1967, 45(51), 44.
[64] Ferry, A.; Billard, T.; Langlois, B. R.; Bacque, E. J. Org. Chem. 2008, 73, 9362.
[65] Ferry, A.; Billard, T.; Langlois, B. R.; Bacque, E. Angew. Chem. Int. Ed. 2009, 48, 8551.
[66] Alazet, S.; Zimmer, L.; Billard, T. Angew. Chem. Int. Ed. 2013, 52, 10814.
[67] Ferry, A.; Billard, T.; Bacqué, E.; Langlois, B. R. J. Fluorine Chem. 2012, 134, 160.
[68] Alazet, S.; Ollivier, K.; Billard, T. Beilstein J. Org. Chem. 2013, 9, 2354.
[69] (a) Alazet, S.; Zimmer, L.; Billard, T. Chem. Eur. J. 2014, 20, 8589.
(b) Alazet, S.; Ismalaj, E.; Glenadel, Q.; Le Bars, D.; Billard, T. Eur. J. Org. Chem. 2015, 4607.
[70] Alazet, S.; Zimmer, L.; Billard, T. J. Fluorine Chem. 2015, 171, 78.
[71] Glenadel, Q.; Alazet, S.; Tlili, A.; Billard, T. Chem. Eur. J. 2015, 21, 14694.
[72] Glenadel, Q.; Billard, T. Chin. J. Chem. 2016, 34, 455.
[73] Glenadel, Q.; Bordy, M.; Alazet, S.; Tlili, A.; Billard, T. Asian J. Org. Chem. 2016, 5, 428.
[74] Tlili, A.; Alazet, S.; Glenadel, Q.; Billard, T. Chem. Eur. J. 2016, 22, 10230.
[75] Alazet, S.; Billard, T. Synlett 2015, 26, 76.
[76] Bonazaba Milandou, L. J. C.; Carreyre, H.; Alazet, S.; Greco, G.; Martin-Mingot, A.; Nkounkou Loumpangou, C.; Ouamba, J. M.; Bouazza, F.; Billard, T.; Thibaudeau, S. Angew. Chem. Int. Ed. 2017, 56, 169.
[77] Yang, Y.; Jiang, X.; Qing, F.-L. J. Org. Chem. 2012, 77, 7538.
[78] (a) Liu, J.-B.; Chu, L.-L.; Qing, F.-L. Org. Lett. 2013, 15, 894.
(b) Xu, J.-B.; Chen, P.-H.; Ye, J.-X.; Liu, G.-S. Acta Chim. Sinica 2015, 73, 1294(in Chinese). (徐佳斌, 陈品红, 叶金星, 刘国生, 化学学报, 2015, 73, 1294).
(c) Wu, W.; Zhang, X.-X.; Liang, F.; Cao, S. Org. Biomol. Chem. 2015, 13, 6992.
[79] Xiao, Q.; Sheng, J.; Chen, Z.; Wu, J. Chem. Commun. 2013, 49, 8647.
[80] Sheng, J.; Fan, C.; Wu, J. Chem. Commun. 2014, 50, 5494.
[81] Sheng, J.; Li, S.; Wu, J. Chem. Commun. 2014, 50, 578.
[82] Liu, T.; Qiu, G.-Y.-S.; Ding, Q.-P.; Wu, J. Tetrahedron 2016, 72, 1472.
[83] Sheng, J.; Wu, J. Org. Biomol. Chem. 2014, 12, 7629.
[84] Liu, Y.-W.; Qiu, G.-Y.-S.; Wang, H.-L.; Sheng, J. Tetrahedron Lett. 2017, 58, 690.
[85] Shao, X.-X.; Wang, X.-Q.; Yang, T.; Lu, L.; Shen, Q.-L. Angew. Chem. Int. Ed. 2013, 52, 3457.
[86] Vinogradova, E. V.; Muller, P.; Buchwald, S. L. Angew. Chem. Int. Ed. 2014, 53, 3125.
[87] Shao, X.-X.; Liu, T.-F.; Lu, L.; Shen, Q.-L. Org. Lett. 2014, 16, 4738.
[88] Ma, B.-Q.; Shao, X.-X.; Shen, Q.-L. J. Fluorine Chem. 2015, 171, 73.
[89] Shao, X.-X.; Liu, T.-F.; Lu, L.; Shen, Q.-L. Org. Lett. 2015, 80, 3012.
[90] (a) Wang, X.-Q.; Yang, T.; Cheng, X.; Shen, Q.-L. Angew. Chem. Int. Ed. 2013, 52, 12860.
(b) Yang, T.; Shen, Q.-L.; Lu, L. Chin. J. Chem. 2014, 32, 678.
[91] Deng, Q. H.; Rettenmeier, C.; Wadepohl, H.; Gade, L. H. Chem. Eur. J. 2014, 20, 93.
[92] He, H.; Zhu, X. Org. Lett. 2014, 16, 3102.
[93] Li, Y.; Ye, Z.; Bellman, T. M.; Chi, T.; Dai, M. Org. Lett. 2015, 17, 2186.
[94] Yang, Y.-D.; Azuma, A.; Tokunaga, E.; Yamasaki, M.; Shiro, M.; Shibata, N. J. Am. Chem. Soc. 2013, 135, 8782.
[95] Arimori, S.; Takada, M.; Shibata, N. Dalton Trans. 2015, 44, 19456.
[96] Huang, Z.; Yang, Y.-D.; Tokunaga, E.; Shibata, N. Asian J. Org. Chem. 2015, 4, 525.
[97] Huang, Z.; Yang, Y.-D.; Tokunaga, E.; Shibata, N. Org. Lett. 2015, 17, 1094.
[98] Arimori, S.; Takada, M.; Shibata, N. Org. Lett. 2015, 17, 1063.
[99] Huang, Z.; Okuyama, K.; Wang, C.; Tokunaga, E.; Li, X.; Shibata, N. ChemistryOpen 2016, 5, 188.
[100] Haas, A.; Möller, G. Chemische Berichte 1996, 129, 1383.
[101] Munavalli, S.; Rohrbaugh, D. K.; Rossman, D. I.; Berg, F. J.; Wagner, G. W.; Durst, H. D. Synth. Commun. 2000, 30, 2847.
[102] Pluta, R.; Nikolaienko, P.; Rueping, M. Angew. Chem. Int. Ed. 2014, 53, 1650.
[103] Kang, K.; Xu, C.-F.; Shen, Q.-L. Org. Chem. Front. 2014, 1, 294.
[104] Bootwicha, T.; Liu, X.; Pluta, R.; Atodiresei, I.; Rueping, M. Angew. Chem. Int. Ed. 2013, 52, 12856.
[105] Rueping, M.; Liu, X.; Bootwicha, T.; Pluta, R.; Merkens, C. Chem. Commun. 2014, 50, 2508.
[106] Pluta, R.; Rueping, M. Chem. Eur. J. 2014, 20, 17315.
[107] Xiao, Q.; He, Q.; Li, J.; Wang, J. Org. Lett. 2015, 17, 6090.
[108] Honeker, R.; Ernst, J. B.; Glorius, F. Chem. Eur. J. 2015, 21, 8047.
[109] Xu, C.-F.; Shen, Q.-L. Org. Lett. 2014, 16, 2046.
[110] Zhao, B.-L.; Du, D.-M. Org. Lett. 2017, 19, 1036.
[111] Xu, C.-F.; Ma, B.-Q.; Shen, Q.-L. Angew. Chem. Int. Ed. 2014, 53, 9316.
[112] Xu, C.-F.; Shen, Q.-L. Org. Lett. 2015, 17, 4561.
[113] Wang, Q.; Qi, Z.; Xie, F.; Li, X.-W. Adv. Synth. Catal. 2015, 357, 355.
[114] Wang, Q.; Xie, F.; Li, X.-W. J. Org. Chem. 2015, 80, 8361.
[115] Maeno, M.; Shibata, N.; Cahard, D. Org. Lett. 2015, 17, 1990.
[116] Luo, J.; Zhu, Z.; Liu, Y.; Zhao, X.-D. Org. Lett. 2015, 17, 3620.
[117] Wu, J.-J.; Xu, J.; Zhao, X.-D. Chem. Eur. J. 2016, 22, 15265.
[118] Liu, X.; An, R.; Zhang, X.; Luo, J.; Zhao, X.-D. Angew. Chem. Int. Ed. 2016, 55, 5846.
[119] Yu, Y.; Xiong, D.-C.; Ye, X.-S. Org. Biomol. Chem. 2016, 14, 6403.
[120] Hu, L.-Q.; Wu, M.-H.; Wan, H.-X.; Wang, J.; Wang, G.-Q.; Guo, H.-B.; Sun, S.-F. New J. Chem. 2016, 40, 6550.
[121] Ernst, J. B.; Rakers, L.; Glorius, F. Synthesis 2017, 49, 260.
[122] Wei, F.; Zhou, T.; Ma, Y.; Tung, C.-H.; Xu, Z.-H. Org. Lett. 2017, 19, 2098.
[123] Zhang, P.-P.; Li, M.; Xue, X.-S.; Xu, C.-F.; Zhao, Q.-C.; Liu, Y.-F.; Wang, H.-Y.; Guo, Y.-L.; Lu, L.; Shen, Q.-L. J. Org. Chem. 2016, 81, 7486.
[124] Li, M.; Guo, J.; Xue, X.-S.; Cheng, J.-P. Org. Lett. 2016, 18, 264.
[125] Zhang, H.; Leng, X.-B.; Wan, X.-L.; Shen, Q.-L. Org. Chem. Front. 2017, 4, 1051.
[126] Zhu, X.-L.; Xu, J.-H.; Cheng, D.-J.; Zhao, L.-J.; Liu, X.-Y.; Tan, B. Org. Lett. 2014, 16, 2192.
[127] Xiang, H.; Yang, C.-H. Org. Lett. 2014, 16, 5686.
[128] Zhu, S.-Q.; Xu, X.-H.; Qing, F.-L. Eur J. Org. Chem. 2014, 4453.
[129] Jiang, L.; Qian, J.; Yi, W.; Lu, G.; Cai, C.; Zhang, W. Angew. Chem. Int. Ed. 2015, 54, 14965.
[130] Chachignon, H.; Maeno, M.; Kondo, H.; Shibata, N.; Cahard, D. Org. Lett. 2016, 18, 2467.
[131] Lu, K.; Deng, Z.-J.; Li, M.; Li, T.-J.; Zhao, X. Org. Biomol. Chem. 2017, 15, 1254.
[132] Jiang, L.-Q.; Yi, W.-B.; Liu, Q.-R. Adv. Synth. Catal. 2016, 358, 3700.
[133] Bu, M. J.; Lu, G. P.; Cai, C. Org. Chem. Front. 2017, 4, 266.
[134] Saidalimu, I.; Suzuki, S.; Tokunaga, E.; Shibata, N. Chem. Sci. 2016, 7, 2106.
[135] Saidalimu, I.; Suzuki, S.; Yoshioka, T.; Tokunaga, E.; Shibata, N. Org. Lett. 2016, 18, 6404.
[136] Harris, J. F.; Stacey, F. W. J. Am. Chem. Soc. 1961, 83, 840.
[137] (a) Harris, J. F. J. Am. Chem. Soc. 1962, 84, 3148.
(b) Harris, J. F. J. Org. Chem. 1966, 31, 931.
[138] Haran, G.; Sharp, D. W. A. J. Chem. Soc., Perkin Trans. 11972, 34.
[139] Yin, F.; Wang, X.-S. Org. Lett. 2014, 16, 1128.
[140] Zhang, K.; Liu, J.-B.; Qing, F.-L. Chem. Commun. 2014, 50, 14157.
[141] Li, C.; Zhang, K.; Xu, X.-H.; Qing, F.-L. Tetrahedron Lett. 2015, 56, 6273.
[142] Fuentes, N.; Kong, W.; Fernandez-Sanchez, L.; Merino, E.; Nevado, C. J. Am. Chem. Soc. 2015, 137, 964.
[143] Qiu, Y.-F.; Zhu, X.-Y.; Li, Y.-X.; He, Y.-T.; Yang, F.; Wang, J.; Hua, H.-L.; Zheng, L.; Wang, L.-C.; Liu, X.-Y.; Liang, Y.-M. Org. Lett. 2015, 17, 3694.
[144] Jin, D.-P.; Gao, P.; Chen, D.-Q.; Chen, S.; Wang, J.; Liu, X.-Y.; Liang, Y.-M. Org. Lett. 2016, 18, 3486.
[145] Zeng, Y.-F.; Tan, D.-H.; Chen, Y.; Lu, W.-X.; Liu, X.-G.; Li, Q.; Wang, H.-G. Org. Chem. Front. 2015, 2, 1511.
[146] Pan, S.; Huang, Y.; Qing, F.-L. Chem. Asian J. 2016, 11, 2854.
[147] Wu, W.; Dai, W.; Ji, X.; Cao, S. Org. Lett. 2016, 18, 2918.
[148] Chen, M.-T.; Tang, X.-Y.; Shi, M. Org. Chem. Front. 2017, 4, 86.
[149] Li, M.; Petersen, J. L.; Hoover, J. M. Org. Lett. 2017, 19, 638.
[150] Liu, K.; Jin, Q.; Chen, S.; Liu, P.-N. RSC Adv. 2017, 7, 1546.
[151] Honeker, R.; Garza-Sanchez, R. A.; Hopkinson, M. N.; Glorius, F. Chem. Eur. J. 2016, 22, 4395.
[152] Li, Y.; Koike, T.; Akita, M. Asian J. Org. Chem. 2017, 6, 445.
[153] Dagousset, G.; Simon, C.; Anselmi, E.; Tuccio, B.; Billard, T.; Magnier, E. Chem. Eur. J. 2017, 23, 4282.
[154] Hu, F.; Shao, X.-X.; Zhu, D.-H.; Lu, L.; Shen, Q.-L. Angew. Chem. Int. Ed. 2014, 53, 6105.
[155] Yang, T.; Lu, L.; Shen, Q.-L. Chem. Commun. 2015, 51, 5479.
[156] Candish, L.; Pitzer, L.; Gomez-Suarez, A.; Glorius, F. Chem. Eur. J. 2016, 22, 4753.
[157] He, B.; Xiao, Z.-W.; Wu, H.; Guo, Y.; Chen, Q.-Y.; Liu, C. RSC Adv. 2017, 7, 880.
[158] (a) Wu, H.; Xiao, Z.; Wu, J.; Guo, Y.; Xiao, J.-C.; Liu, C.; Chen, Q.-Y. Angew. Chem. Int. Ed. 2015, 54, 4070.
(b) Guo, S.; Zhang, X.; Tang, P.-P. Angew. Chem. Int. Ed. 2015, 54, 4065.
[159] Mukherjee, S.; Maji, B.; Tlahuext-Aca, A.; Glorius, F. J. Am. Chem. Soc. 2016, 138, 16200.
[160] Li, H.; Shan, C.; Tung, C.-H.; Xu, Z.-H. Chem. Sci. 2017, 8, 2610.
/
〈 |
|
〉 |