Advances of Metal-Organic Frameworks in Adsorption and Separation Applications
Received date: 2017-04-18
Online published: 2017-09-04
Supported by
Project supported by the National Natural Science Foundation of China (Nos. 21522706, 21677167, 21677159, 21407047), the National Key Research and Development Program of China (No. 2016YFA0203102), and the Thousand Young Talents Program of China.
As a new type of nano porous material, Metal-Organic Frameworks (MOFs) have been rapidly developed for decades. MOFs are synthesized via the self-assembling combination of inorganic metals and organic ligands, and they have many characteristics superior to the conventional porous materials. The ultrahigh surface area, high porosity, adjustable pore sizes, outstanding thermal and chemical stability enable MOFs to be promising materials for widespread applications. With the deepening of research in recent years, MOFs are successfully applied in diverse fields, such as catalysis, adsorption, separation, and biomedicine imaging, among others. The advances of MOFs used in adsorption and separation are reviewed in this paper, with an emphasis on storage of fuels, carbon capture, membrane separation, liquid-phase adsorption, and chromatographic separation and purification. In addition, the future research directions regarding MOFs in the adsorption and separation field are prospected also.
Zhang He , Li Guoliang , Zhang Kegang , Liao Chunyang . Advances of Metal-Organic Frameworks in Adsorption and Separation Applications[J]. Acta Chimica Sinica, 2017 , 75(9) : 841 -859 . DOI: 10.6023/A17040168
[1] Li, H.; Eddaoudi, M.; O’Keeffe, M.; Yaghi, O. M. Nature 1999, 402, 276.
[2] Li, J.-R.; Sculley, J.; Zhou, H.-C. Chem. Rev. 2012, 112, 869.
[3] Li, J.-R.; Kuppler, R. J.; Zhou, H.-C. Chem. Soc. Rev. 2009, 38, 1477.
[4] Li, J.-R.; Ma, Y.; McCarthy, M. C.; Sculley, J.; Yu, J.; Jeone, H. K.; Balbuena, P. B.; Zhou, H.-C. Coord. Chem. Rev. 2011, 255, 1791.
[5] Yang, C. X.; Yan, X. P. Chin. J. Anal. Chem. 2013, 41, 1297. (杨成雄, 严秀平, 分析化学, 2013, 41, 1297.)
[6] Yu, Y.; Ren, Y.; Shen, W.; Deng, H.; Gao, Z. Trends Anal. Chem. 2013, 50, 33.
[7] Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O’Keeffe, M.; Yaghi, O. M. Science 2002, 295, 469.
[8] Millward, A. R.; Yaghi, O. M. J. Am. Chem. Soc. 2005, 127, 17998.
[9] Cravillon, J.; Munzer, S.; Lohmeier, S. J.; Feldhoff, A.; Huber, K.; Wiebcke, M. Chem. Mater. 2009, 21, 1410.
[10] Horcajada, P.; Chalati, T.; Serre, C.; Gillet, B.; Sebrie, C.; Baati, T.; Eubank, J. F.; Heurtaux, D.; Clayette, P.; Kreuz, C.; Chang, J. S.; Hwang, Y. K.; Marsaud, V.; Bories, P. N.; Cynober, L.; Gil, S.; Ferey, G.; Couvreur, P.; Gref, R. Nat. Mater. 2010, 9, 172.
[11] Loiseau, T.; Serre, C.; Huguenard, C.; Fink, G.; Taulelle, F.; Henry, M.; Bataile, T.; Férey, G. Chem. Eur. J. 2004, 10, 1373.
[12] Cavka, J. H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K. P. J. Am. Chem. Soc. 2008, 130, 13850.
[13] Chui, S. S. Y.; Lo, S. M. F.; Charmant, J. P. H.; Orpen, A. G.; Williams, I. D. A. Science 1999, 283, 1148.
[14] An, J.; Shade, C. M.; Chengelis-Czegan, D. A.; Petoud, S.; Rosi, N. L. J. Am. Chem. Soc. 2011, 133, 1220.
[15] Liu, T.-F.; Feng, D.; Chen, Y.-P.; Zou. L.; Bosch, M.; Yuan, S.; Wei, Z.; Fordham, S.; Wang, K.; Zhou, H.-C. J. Am. Chem. Soc. 2015, 137, 413.
[16] Zhou, W.; Wu, H.; Yildirim, T. J. Am. Chem. Soc. 2008, 130, 15268.
[17] Tranchemontagne, D. J.; Park, K. S.; Furukawa, H.; Eckert, J.; Knobler, C. B.; Yaghi, O. M. J. Phys. Chem. 2012, 116, 13143.
[18] Millward, A. R.; Yaghi, O. M. J. Am. Chem. Soc. 2005, 127, 17998.
[19] Haque, E.; Jun, J. W.; Jhung, S. H. J. Hazard. Mater. 2011, 185, 507.
[20] Cychosz, K. A.; Wong-Foy, A. G.; Matzger, A. J. J. Am. Chem. Soc. 2008, 130, 6938.
[21] Cui, X. Y.; Gu, Z. Y.; Jiang, D. Q.; Li, Y.; Wang, H. F.; Yan, X. P. Anal. Chem. 2009, 81, 9771.
[22] Chughtai, A. H.; Ahmad, N.; Younus, H. A.; Laypkov, A.; Verpoort, F. Chem. Soc. Rev. 2015, 44, 6804.
[23] Yang, L.; Xu, C.; Ye, W.; Liu W. Sens. Actuat. B-Chem. 2015, 215, 489.
[24] Cui, Y.; Chen, B.; Qian, G. Coord. Chem. Rev. 2014, 273, 76.
[25] Zhou, J. M.; Shi, W.; Li, H. M.; Li, H. J. Phys. Chem. C 2014, 118, 416.
[26] Rocca, J. D.; Liu, D.; Lin, W. Acc. Chem. Res. 2011, 44, 957.
[27] Horcajada, P.; Chalati, T.; Sere, C.; Gillet, B.; Sebrie, C.; Baati, T.; Eubank, J. F.; Heurtaux, D.; Clayette, P.; Kreuz, C.; Chang, J. S.; Hwang, Y. K.; Marsaud, V.; Bories, P. N.; Cynober, L.; Gil, S.; Ferey, G.; Couvreur, P.; Gref, R. Nat. Mater. 2010, 9, 172.
[28] Wang, L.; Han, Y.; Feng, X.; Zhou, J.; Qi, P.; Wang, B. Coord. Chem. Rev. 2015, 307, 361.
[29] Silva, P.; Vilela, S. M. F.; Tomé, J. P. C.; Paz, F. A. A. Chem. Soc. Rev. 2015, 44, 6774.
[30] Yilmaz, M.; Trukhan, N.; Müller, U. Chin. J. Catal. 2012, 33, 3.
[31] Rose, M.; Böhringer, B.; Jolly, M.; Fisher, R.; Kaskel, S. Adv. Eng. Mater. 2011, 13, 356.
[32] Kaye, S. S.; Dailly, A.; Yaghi, O. M.; Long, J. R. J. Am. Chem. Soc. 2007, 129, 14176.
[33] Furukawa, H.; Miller, M. A.; Yaghi, O. M. J. Mater. Chem. 2007, 17, 3197.
[34] Llewellyn, P. L.; Bourrelly, S.; Serre, C.; Vimont, A.; Daturi, M.; Hamon, L.; Weireld, G. D.; Chang, J. S.; Hong, D. Y.; Hwang, Y. K.; Jhung, S. H.; Férey, G. Langmuir. 2008, 24, 7245.
[35] Furukawa, H.; Ko, N; Go, Y. B.; Aratani, N.; Choi, S. B. Science 2010, 329, 424.
[36] Hu, C.; Li, H.; Jia, W.; Liu, M.; Hao, Z.; Zhu, Z. Chin. J. Chem. 2015, 33, 247.
[37] Allendorf, M. D.; Stavila, V. CrystEngComm 2015, 17, 229.
[38] Sun, M.; Zhao, T.; Wang, J.; Ma, Z.; Li, F. Chin. J. Chem. 2015, 33, 1057.
[39] Liang, D.; Li, Z.; Li, P.; Chen, Y.; Zhang, S.; Wang, Y. Chin. J. Chem. 2015, 33, 1389.
[40] Wu, X.; Hu, C.; Zhao, G.; Yuan, Y.; Zhu, Z. Chin. J. Chem. 2016, 34, 1291.
[41] Yan, Z.; Yuan, Y.; Liu, J.; Li, Q.; Yuan, N.; Zhang, D.; Tian, Y.; Zhu, G. Acta Chim. Sinica 2016, 74, 67. (闫卓君, 元野, 刘佳, 李勤, 阮南中, 张大明, 田宇阳, 朱广山, 化学学报, 2016, 74, 67.)
[42] Ren, H.; Zhu, G. Acta Chim. Sinica 2015, 73, 587. (任浩, 朱广山, 化学学报, 2015, 73, 587.)
[43] Li, Y.; Wang, H.; Dong, M.; Li, J.; Wang, G.; Qin, Z.; Fan, W.; Wang, J. Acta Chim. Sinica 2016, 74, 529. (李艳春, 王浩, 董梅, 李俊汾, 王国富, 秦张峰, 樊卫斌, 王建国, 化学学报, 2016, 74, 529.)
[44] Allendorf, M. D.; Bauer, C. A.; Bhakta, R. K.; Houk, R. J. T. Chem. Soc. Rev. 2009, 38, 1330.
[45] Khan, N. A.; Jhung, S. H. Coord. Chem. Rev. 2015, 285, 11.
[46] Shekhah, O.; Liu, J.; Fischer, R. A.; Wöll, C. Chem. Soc. Rev. 2011, 40, 1081.
[47] Meek, S. T.; Greathouse, J. A.; Allendorf, M. D. Adv. Mater. 2011, 23, 249.
[48] Nam, T. H.; Kim, J. G.; Choi, Y. S. Int. J. Hydrogen Energy 2013, 38, 999.
[49] Nielsen, M.; Alberico, E.; Baumann, W.; Drexler, H. J.; Junge, H.; Gladiali, S.; Beller, M. Nature 2013, 495, 85.
[50] Lai, Q.; Paskevicius, M.; Sheppard, D. A.; Buckley, C. E.; Thornton, A. W.; Hill, M. R.; Gu, Q.; Mao, J.; Huang, Z.; Liu, H. K.; Guo, Z.; Banerjee, A.; Chakraborty, S.; Ahuja, R.; Aguey-Zinsou, K. ChemSusChem 2015, 8, 2789.
[51] Rosi, N. L.; Eckert, J.; Eddaoudi, M.; Vodak, D. T.; Kim, J.; O’Keeffe, M.; Yaghi, O. M. Science 2003, 300, 1127.
[52] Yang, H.; Orefuwa, S.; Goudy, A. Microporous Mesoporous Mater. 2011, 143, 37.
[53] Latroche, M.; Surblé, S.; Serre, C.; Mellot-Draznieks, C.; Llewellyn, P. L.; Lee, J.-H.; Chang, J. S.; Jhung, S. H.; Férey, G. Angew. Chem., Int. Ed. 2006, 45, 8227.
[54] Rowsell, J. L. C.; Millward, A. R.; Park, K. S.; Yaghi, O. M. J. Am. Chem. Soc. 2004, 126, 5666.
[55] Frost, H.; Düren, T.; Snurr, R. Q. J. Phys. Chem. B 2006, 110, 6336.
[56] Xu, W.; Tao, Z.-L.; Chen, J. Process. Chem. 2006, 18, 200. (许炜, 陶占良, 陈军, 化学进展, 2006, 18, 200.)
[57] Makal, T. A.; Li, J.-R.; Lu, W.; Zhou, H.-C. Chem. Soc. Rev. 2012, 41, 7761.
[58] Gándara, F.; Furukawa, H.; Lee, S.; Yaghi, O. M. J. Am. Chem. Soc. 2014, 136, 5271.
[59] Gomez-Gualdron, D. A.; Gutov, O. V.; Krungleviciute, V.; Borah, B.; Mondloch, J. E.; Hupp, J. T.; Yildirim, T.; Farha, O. K. Chem. Mater. 2014, 26, 5632.
[60] Peng, Y.; Krungleviciute, V.; Eryazici, I.; Hupp, J. T.; Farha, O. K.; Yildirim, T. J. Am. Chem. Soc. 2013, 135, 11887.
[61] Rao, X.; Cai, J.; Yu, J.; He, Y.; Wu, C.; Zhou, W.; Yildirim, T.; Chen, B.; Qian, G. Chem. Commun. 2013, 49, 6719.
[62] Wu, H.; Simmons, J. M.; Liu, Y.; Brown, C. M.; Wang, X.-S.; Ma, S.; Peterson, V. K.; Southon, P. D.; Cameron, J. K.; Zhou, H.-C.; Yildirim, T.; Zhou, W. Chem. Eur. J. 2010, 16, 5205.
[63] Kale, C.; Górak, A.; Schoenmakers, H. Int. J. Greenh. Gas. Con. 2013, 17, 294.
[64] Zhang, Z.; Yao, Z.-Z.; Xiang, S.; Chen, B. Energy Environ. Sci. 2014, 7, 2868.
[65] Bourrelly, S.; Llewellyn, P. L.; Serre, C.; Millange, F.; Loiseau, T.; Férey, G. J. Am. Chem. Soc. 2005, 127, 13519.
[66] Phan, A.; Doonan, C. J.; Yaghi, O. M. Acc. Chem. Res. 2010, 43, 58.
[67] Hamon, L.; Jolimaitre, E.; Pirngruber, G. D. Ind. Eng. Chem. Res. 2010, 49, 7497.
[68] Couck, S.; Denayer, J. F. M.; Baron, G. V. J. Am. Chem. Soc. 2009, 131, 6326.
[69] Chaemchuem, S.; Kui, Z.; Verpoort, F. CrystEngComm 2016, 18, 7614.
[70] Jeazet, H. B. T.; Sorribas, S.; Román-Marín, J. M.; Zornoza, B.; Téllez, C.; Janiak, C. Eur. J. Inorg. Chem. 2016, 27, 4363.
[71] Rodenas, T.; Luz, I.; Prieto, G.; Seoane, B.; Miro, H.; Corma, A.; Kapteijn, F.; Xamena, F. X. L. I.; Gascon, J. Nat. Mater. 2015, 14, 48.
[72] Jihyun, A.; Geib, S. J.; Rosi, N. L. J. Am. Chem. Soc. 2010, 132, 38.
[73] Zheng, B.; Bai, J.; Duan, J.; Wojtas, L.; Zaworotko, M. J. J. Am. Chem. Soc. 2011, 133, 748.
[74] Liu, B.; Wu, W. P.; Hou, L.; Wang, Y. Y. Chem. Commun. 2014, 50, 8731.
[75] Jeazet, H. B. T.; Staudt, C.; Janiak, C. Dalton Trans. 2012, 41, 14003.
[76] Qiu, S.; Xue, M.; Zhu, G. Chem. Soc. Rev. 2014, 43, 6116.
[77] Ben, T.; Lu, C.; Pei, C.; Xu, S.; Qiu, S. Chem. Eur. J. 2012, 18, 10250.
[78] Li, Y.; Liang, F.; Bux, H.; Yang, W.; Caro, J. J. Membr. Sci. 2010, 354, 48.
[79] Li, T.; Pan, Y.; Peinemann, K.-V.; Lai, Z. J. Membr. Sci. 2013, 425, 235.
[80] Wang, Z.; Wang, D.; Zhang, S.; Hu, L.; Jin, J. Adv. Mater. 2016, 28, 3399.
[81] Shekhah, O.; Swaidan, R.; Belmabkhout, Y.; Plessis, M. D.; Jacobs, T.; Barbour, L. J.; Pinnau, I.; Eddaoudi, M. Chem. Commun. 2014, 50, 2089.
[82] Liu, D.; Ma, X.; Xi, H.; Lin, Y. S. J. Adv. Mater. 2014, 451, 85.
[83] Zhang, X.; Liu, Y.; Kong, L.; Liu, H.; Qiu, J.; Han, W.; Weng, L.-T.; Yeung, K. L.; Zhu, W. J. Mater. Chem. A 2013, 1, 10635.
[84] Hu, Y.; Wei, J.; Liang, Y.; Zhang, H.; Zhang, X.; Shen, W.; Wang, H. Angew. Chem. Int. Ed. 2016, 55, 2048.
[85] Yoo, Y.; Lai, Z.; Jeong, H.-K. Microporous Mesoporous Mater. 2009, 123, 100.
[86] Huang, A.; Bux, H.; Steinbach, F.; Caro, J. Angew. Chem., Int. Ed Engl. 2010, 49, 4958.
[87] Huang, A.; Chen, Y.; Wang, N.; Hu, Z.; Jiang, J.; Caro, J. Chem. Commun. 2012, 48, 10981.
[88] Friebe, S.; Geppert, B.; Steinbach, F.; Caro, J. Appl. Mater. Interfaces 2017, 9, 12878.
[89] Ben, T.; Lu, C.; Pei, C.; Xu, S.; Qiu, S. Chem. Eur. J. 2012, 18, 10250.
[90] Nan, J.; Dong, X.; Wang, W.; Jin, W.; Xu, N. Langmuir. 2011, 27, 4309.
[91] Lee, D.-J.; Li, Q.; Kim, H.; Lee, K. Microporous Mesoporous Mater. 2012, 163, 169.
[92] Zhang, F.; Zou, X. Q.; Gao, X.; Fan, S. J; Sun, F. X.; Ren, H.; Zhu, G. S. Adv. Funct. Mater. 2012, 22, 3585.
[93] Arjmandi, M.; Pakizeh, M. J. Ind. Eng. Chem. 2014, 20, 3857.
[94] Liu, Y.; Zeng, G.; Pan, Y.; Lai, Z. J. Membr. Sci. 2011, 379, 46.
[95] Tien-Binh, N.; Vinh-Thang, H.; Chen, X. Y. J. Membr. Sci. 2016, 520, 941.
[96] Haque, E.; Lee, J. E.; Jang, I. E.; Hwang, Y. K.; Chang, J.; Jegai, J.; Jhung, S. H. J. Hazard. Mater. 2010, 181, 535.
[97] Jhung, S. H.; Lee, J. H.; Férey, G.; Chang, J.-S. Adv. Mater. 2007, 19, 121.
[98] Dinesh, V. P.; Somayajulu, R. P. B.; Dangi, G. P. Ind. Eng. Chem. Res. 2011, 50, 10516.
[99] Ke, F.; Qiu, L. G.; Yuan, Y. P.; Peng, F. M.; Jiang, X.; Xie, A. J.; Shen, Y. H.; Zhu, J. F. J. Hazard. Mater. 2011, 196, 36.
[100] Maleki, A.; Hayati, B.; Naghizadeh, M.; Joo, S. W. J. Ind. Eng. Chem. 2015, 28, 211.
[101] Hasan, Z.; Jeon, J.; Jhung, S. H. J. Hazard. Mater. 2012, 209, 151.
[102] Seo, Y. S.; Khan, N. A.; Jhung, S. H. Chem. Eng. J. 2015, 270, 22.
[103] Li, S.; Chen, Y.; Pei, X.; Zhang, S.; Feng, X.; Zhou, J.; Wang, B. Chin. J. Chem. 2016, 34, 175.
[104] Shi, F.; Hammoud, M.; Thompson, L. T. Appl. Catal. B 2011, 103, 261.
[105] Park, T. H.; Cychosz, K. A.; Wong-Foy, A. G. Chem. Commun. 2011, 47, 1452.
[106] Ahmed, I.; Hasan, Z.; Khan, N. A.; Jhung, S. H. Appl. Catal. B 2013, 129, 123.
[107] Chang, N.; Gu, Z. Y.; Wang, H. F.; Yan, X. P. Anal. Chem. 2011, 83, 7094.
[108] Ge, D.; Lee, H. K. J. Chromatogr. A 2011, 1218, 8490.
[109] Shang, H. B.; Yang, C. X.; Yan, X. P. J. Chromatogr. A 2014, 1357, 165.
[110] Yu, L. Q.; Yan, X. P. Chem. Commun. 2013, 49, 2142.
[111] Chen, B. L.; Liang, C.; Yang, J.; Contreras, D. S.; Clancy, Y. L.; Lobkovsky, E. B.; Yaghi, O. M.; Dai, S. Angew. Chem., Int. Ed. 2006, 45, 1390.
[112] Chang, N.; Gu, Z. Y.; Yan, X. P. J. Am. Chem. Soc. 2010, 132, 13645.
[113] Fan, L.; Yan, X. P. Talanta 2012, 99, 944.
[114] Gu, Z. Y.; Yan, X. P. Angew. Chem., Int. Ed. 2010, 49, 1477.
[115] Gu, Z.-Y.; Jiang, J.-Q.; Yan, X.-P. Anal. Chem. 2011, 83, 5093.
[116] Yang, C.-X.; Yan, X.-P. Anal. Chem. 2011, 83, 7144.
[117] Yan, Z.; Zhang, W.; Gao, J.; Lin, Y.; Li, J.; Lin, Z.; Zhang, L. RSC Adv. 2015, 5, 40094.
[118] Yang, C.-X.; Liu, S.-S.; Wang, H.-F.; Wang, S.-W.; Yan, X.-P. Analyst 2012, 137, 133.
[119] Liu, S.-S.; Yang, C.-X.; Wang, S.-W.; Yan, X.-P. Analyst 2012, 137, 816.
[120] Fu, Y. Y.; Yang, C. X.; Yan, X. P. Langmuir 2012, 28, 6794.
[121] Zhao, W. W.; Zhang, C. Y.; Yan, Z. G.; Bai, L. P.; Wang, X.; Zhou, Y. Y.; Xie, Y.; Li, F. S.; Li, J. R. J. Chromatogr. A 2014, 1370, 121.
[122] Yang, C. X.; Chen, Y. J.; Wang, H. F.; Yan, X. P. Chem. Eur. J. 2011, 17, 11734.
[123] Li, Y. X.; Zhang, W.; Li, Z.; Xie, Z. G. Acta Chim. Sinica 2015, 73, 641. (李阳雪, 张巍, 刘智, 谢志刚, 化学学报, 2015, 73, 641.)
[124] Cui, Y.; Li, B.; He, H.; Zhou, W.; Chen, B.; Qian, G. Acc. Chem. Res. 2016, 49, 483.
/
| 〈 |
|
〉 |