Article

Monolayer-gated Ion Transport in Artificial Ion Channels Based on A Nanoporous Gold Membrane

  • Yan Nana ,
  • Xiao Tianliang ,
  • Liu Zhaoyue
Expand
  • School of Chemistry, Beihang University, Beijing 100191

Received date: 2017-05-17

  Online published: 2017-09-04

Supported by

Project supported by the National Natural Science Foundation of China (No. 21571011) and the National Basic Research Program of China (No. 2014CB931803).

Abstract

Biological ion channels that intelligently control the transport of ions or molecules through the cell membrane in response to external stimuli can maintain the balance between the extracellular and intracellular substances, which ensures the normal life activities of the organism. The development of artificial ion channels with analogous function to the biological counterparts is of great significance because of their possible applications as ion switches and sensors. In this paper, we describe a new type of artificial ion channels based on de-alloyed nanoporous gold membrane with three-dimensional nanochannels. The nanochannels were built by electrochemical etching of gold-silver alloy in concentrated nitric acid. The surface morphology and component of nanoporous gold membrane were characterized by scanning electron microscope (SEM) and energy dispersive X-ray spectrum (EDX). The ion transport properties of artificial ion channels were characterized with current-voltage curves which was measured by a picoammeter. Our results indicate that this nanoporous gold membrane demonstrates an ion rectification phenomenon because of the electrochemical polarization of gold under an electric field. Subsequently, a layer of hydrophobic molecules was assembled on the surface of nanoporous gold membrane by strong Au-thiol bonds after immersed in the solution of 1-dodecanethiol. The measurements of water contact angles (CAs) indicated that the modification of 1-dodecanethiol molecules converted the surface water CA of nanoporous gold membrane from 36.5° to 120.6°. This hydrophobic monolayer prevents the transport of water-soluble ions, which makes the channels exist in an "off" state. The stimulus of surfactant in the electrolyte is favorable for the wetting of channel surface by aqueous electrolyte, which makes the channels exist in an "on" state for water-soluble ions. Therefore, the monolayer-modified nanoporous gold membrane can serve as a surfactant-gated ion switch. Our work provides a new idea for the preparation of artificial ion channels, which can be applied for intelligently responsive artificial system.

Cite this article

Yan Nana , Xiao Tianliang , Liu Zhaoyue . Monolayer-gated Ion Transport in Artificial Ion Channels Based on A Nanoporous Gold Membrane[J]. Acta Chimica Sinica, 2017 , 75(9) : 873 -877 . DOI: 10.6023/A17050216

References

[1] Hille, B. Ion Channels of Excitable Membranes, Sinauer Associates, Sunderland, 2001, pp. 1~21.
[2] Tang, C.; Wang, L.; Yun, Y.; Zhang, C.; Liu, B. Acta Chim. Sinica 2011, 69, 343 (in Chinese). (唐橙橙, 王丽华, 贠延滨, 张陈淋, 刘必前, 化学学报, 2011, 69, 343.)
[3] Lu, J.; Li, J. H. Angew. Chem. Int. Ed. 2015, 54, 13576.
[4] Cooper, G. M.; Hausman, R. E. The Cell: A Molecular Approach, Sinauer Associates, Sunderland, 2000, pp. 58~65.
[5] Sigworth, F. J. Q. Rev. Biophys. 1994, 27, 1.
[6] Roux, B.; Berneche, S.; Egwolf, B.; Lev, B.; Noskov, Y.; Rowley, N.; Yu, H. J. Gen. Physiol. 2011, 137, 415.
[7] Hou, X.; Guo, W.; Jiang, L. Chem. Soc. Rev. 2011, 40, 2385.
[8] Hou, X.; Jiang, L. ACS Nano 2009, 3, 3339.
[9] Siwy, Z. S.; Howorka, S. Chem. Soc. Rev. 2010, 39, 1115.
[10] Xu, Y.; Meng, Z.; Zhai, J. Acta Chim. Sinica 2016, 74, 538 (in Chinese). (许阳蕾, 孟哲一, 翟锦, 化学学报, 2016, 74, 538.)
[11] Lan, W.; Holden, D. A.; White, H. S. J. Am. Chem. Soc. 2011, 133, 13300.
[12] White, H. S.; Bund, A. Langmuir 2008, 24, 2212.
[13] Liu, S.; Dong, Y.; Zhao, W.; Xie, X.; Ji, T.; Yin, X.; Liu, Y.; Liang, Z.; Momotenko, D.; Liang, D.; Girault, H.; Shao, Y. Anal. Chem. 2012, 84, 5565.
[14] Chen, P.; Mitsui, T.; Farmer, D. B.; Golovchenko, J.; Gordon, R. G.; Branton, D. Nano Lett. 2004, 4, 1333.
[15] Ali, M.; Yameen, B.; Cervara, J.; Ramírez, P.; Neumann, R.; Ensinger, W.; Knoll, W; Azzaroni, O. J. Am. Chem. Soc. 2010, 132, 8338.
[16] Zhang, M.; Hou, X.; Wang, J.; Tian, Y.; Xia, F.; Zhai, J.; Jiang, L. Adv. Mater. 2012, 24, 2424.
[17] Ali, M.; Ramirez, P.; Nguyen, H. Q.; Nasir, S.; Cervera, J.; Mafe, S.; Ensinger, W. ACS Nano 2012, 6, 3631.
[18] Zhou, D.; Meng, Z.; Zhang, M.; Zhai, J. Acta Chim. Sinica 2015, 73, 716 (in Chinese). (周迪, 孟哲一, 张明辉, 翟锦, 化学学报, 2015, 73, 716.)
[19] Ali, M.; Nasir, S.; Ramirez, P.; Ahmed, I.; Nguyen, Q. H.; Fruk, L.; Mafe, S.; Ensinger, W. Adv. Funct. Mater. 2012, 22, 390.
[20] Guo, W.; Xia, H.; Xia, F.; Hou, X.; Cao, L.; Wang, L.; Xue, J.; Zhang, G.; Song, Y.; Zhu, D.; Wang, Y.; Jiang, L. Chem. Phys. Chem. 2010, 11, 859.
[21] Vlassiouk, I.; Siwy, Z. Nano Lett. 2007, 7, 552.
[22] Xia, F.; Guo, W.; Hou, X.; Xue, J.; Xia, H.; Wang, L.; Song, Y.; Ji, H.; Ouyang, Q.; Wang, Y.; Jiang, L. J. Am. Chem. Soc. 2008, 130, 8345.
[23] Jog, P. V.; Gin, M. S. Org. Lett. 2008, 10, 3693.
[24] Kumar, S. K.; Hong, J. D. Langmuir 2008, 24, 4190.
[25] Yameen, B.; Ali, M.; Neumann, R.; Ensinger, W.; Knoll, W.; Azzaroni, O. Nano Lett. 2009, 9, 2788.
[26] Lin, L.; Liu, Y.; Yan, J.; Wang, X. S.; Li, J. H. Anal. Chem. 2013, 85, 334.
[27] Hou, X.; Guo, W.; Xia, F.; Nie, F.; Dong, H.; Tian, Y.; Wen, L.; Wang, L.; Cao, L.; Yang, Y.; Xue, J.; Song, Y.; Wang, Y.; Liu, D.; Jiang, L. J. Am. Chem. Soc. 2009, 131, 7800.
[28] Matsumoto, F.; Nishio, K.; Masuda, H. Adv. Mater. 2004, 16, 2105.
[29] Mara, A.; Siwy, Z.; Trautmann, C.; Wan, J.; Kamme, F. Nano Lett. 2004, 4, 497.
[30] Hu, Z. Y.; Zhang, Q. Q.; Gao, J.; Liu, Z. Y.; Zhai, J.; Jiang, L. Langmuir 2013, 29, 4806.
[31] Haque, F.; Li, J.; Wu, H.; Liang, X.; Guo, P. Nano Today 2013, 8, 56.
[32] Lin, L.; Yan, J.; Li, J. Anal. Chem. 2014, 86, 10546.
[33] Van Der Heyden, F. H.; Bonthuis, D. J.; Stein, D.; Meyer, C.; Dekker, C. Nano Lett. 2007, 7, 1022.
[34] Xie, Y.; Wang, X.; Xue, J.; Jin, K.; Chen, L.; Wang, Y. Appl. Phys. Lett. 2008, 93, 163116.
[35] Zhang, Q. Q.; Xiao, T. L.; Yan, N. N.; Liu, Z. Y.; Zhai, J.; Diao, X. G. Nano Energy 2016, 28, 188.
[36] Guo, W.; Cao, L.; Xia, J.; Nie, F.; Ma, W.; Xue, J.; Song, Y.; Zhu, D.; Wang, Y.; Jiang, L. Adv. Funct. Mater. 2010, 20, 1339.
[37] Wen, L.; Hou, X.; Tian, Y.; Zhai, J.; Jiang, L. Adv. Funct. Mater. 2010, 20, 2636.
[38] Martin, R.; Nishizawa, M.; Jirage, K.; Kang, M.; Lee, S. Adv. Mater. 2001, 13, 1351.
[39] Vlassiouk, I.; Kozel, T. R.; Siwy, Z. S. J. Am. Chem. Soc. 2009, 131, 8211.
[40] Hou, X.; Dong, H.; Zhu, D.; Jiang, L. Small 2010, 3, 361.
[41] Siwy, Z. S.; Heins, E.; Harrell, C.; Kohli, P.; Martin, R. J. Am. Chem. Soc. 2004, 126, 10850.
[42] Lee, B.; Martin, R. J. Am. Chem. Soc. 2002, 124, 11850.
[43] Nishizawa, M.; Menon, P.; Martin, R. Science 1995, 268, 700.
[44] Yang, C.; Hinkle, P.; Menestrina, J.; Vlassiouk, I.; Siwy, Z. S. J. Phys. Lett. 2016, 7, 4152.
[45] Li, X. L.; Wang, Y.; Zhai, J. Acta Chim. Sinica 2016, 74, 597 (in Chinese). (李秀林, 汪洋, 翟锦, 化学学报, 2016, 74, 597.)
[46] Ding, Y.; Kim, Y.; Erlebacher, J. Adv. Mater. 2004, 16, 1897.
[47] Xu, C.; Su, J.; Xu, X.; Liu, P.; Zhao, H.; Tian, F.; Ding, Y. J. Am. Chem. Soc. 2007, 129, 42.
[48] Erlebacher, J.; Aziz, M. J.; Karma, A.; Dimitrov, N.; Sieradzki, K. Nature 2001, 410, 450.
[49] Newman, R.; Sieradzki, K. Science 1994, 263, 1708.
[50] Polat, O.; Seker, E. J. Phys. Chem. C 2015, 119, 24812.
[51] Forty, A. J.; Durkin, P. Philos. Mag. A 1980, 42, 295.
[52] Zheng, D.; Hu, C.; Gan, T.; Dang, X.; Hu, S. Sens. Actuat. B-Chem. 2010, 148, 247.

Outlines

/