Article

Experimental Research of Protein Translocation Using Solid-state Nanopore

  • Sha Jingjie ,
  • Xu Bing ,
  • Chen Yunfei ,
  • Yang Yanjing
Expand
  • a Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189;
    b School of Mechanical Engineering, Southeast University, Nanjing 211189;
    c Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029;
    d Department of Preventive Dentistry, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029

Received date: 2017-06-16

  Online published: 2017-09-04

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 51375092, 51435003 and 51675101) and the Fundamental Research Funds for the Central Universities (No. 2242015R30002).

Abstract

For proteins' diverse range of structural and functional features, they are important populations of biomolecules within organisms. Common methods to detect proteins are with the help of fluorescence or enzyme. Due to the advantages like lable-free and single-molecule detection, nanopore technology provides a novel platform for proteins' characterization. In this experiment, the patch clamp amplifier is used to apply the voltage and acquire the tiny current blockage. The Si3N4 membrane drilled with a nanopore separated the buffer solution into two sides:cis and trans. When the voltage applied into the buffer solution, charged proteins would been driven through the pore from one side to the other. Then, a series of current blockages could be obtained. By analysing these data, the size and conformation of the biomolecules could be acquired. In this paper, we using solid-state nanopore detected single protein and protein-protein complexes. The nanopore was characterized firstly. Then, both the applied voltage and the pH of the electrolyte solution were regulated. Under the low voltage, the sample proteins could be regarded as a rigid spheroid, and the dwell time is decreased with the voltage increasing. It was found that, the charges carried by proteins could be improved by higher pH of buffer solution, so that the dwell time would been shortened. Furthermore, based on the high specific between the antigen and antibody which are proteins, the translocation events before and after the addition of specific antigen into the solution with antibody were compared. Results showed that the relative current drop of the complex is larger than the pure antibody, implying that the antigen has been bound into the antibody. Due to the difference of excluded volume, the antibody and antigen-antibody complexes could be distinguished by the solid-state nanopore. In the future, the nanopore technology is promising to be applied into the recognition of multiply proteins and protein-protein interaction.

Cite this article

Sha Jingjie , Xu Bing , Chen Yunfei , Yang Yanjing . Experimental Research of Protein Translocation Using Solid-state Nanopore[J]. Acta Chimica Sinica, 2017 , 75(11) : 1121 -1125 . DOI: 10.6023/A17060271

References

[1] Wang, J.-Y. Biochemistry 1, Higher Education Press, Beijing, 2002, pp. 123~124. (王镜岩, 生物化学, 上册, 高等教育出版社, 北京, 2002, pp. 123~124.)
[2] Li, C.-Y. Basic Immunology, Science Press, Beijing, 2012, pp. 35~39(in Chinese). (李春艳, 免疫学基础, 科学出版社, 北京, 2012, pp. 35~39.)
[3] Waduge, P.; Hu, R.; Bandarkar, P.; Yamazaki, H.; Cressiot, B.; Zhao, Q.; Whitford, P. C.; Wanunu, M. ACS Nano 2017, 11, 5706.
[4] Zhang, J.-Y.; Zhou, X.-Y.; Zhou, M.; Jia, H.-X. Acta Chim. Sinica 2016, 74, 513(in Chinese). (张佳玉, 周晓毓, 周曼, 贾红霞, 化学学报, 2016, 74, 513.)
[5] Deamer, D.; Akeson, M.; Branton, D. Nat. Biotechnol. 2016, 34, 518.
[6] Dekker, C. Nat. Nanotechnol. 2007, 2, 209.
[7] Howorka, S.; Cheley, S.; Bayley, H. Nat. Biotechnol. 2001, 19, 636.
[8] Meller, A.; Nivon, L.; Branton, D. Phys. Rev. Lett. 2001, 86, 3435.
[9] Nakane, J. J.; Akeson, M.; Marziali, A. J. Phys.-Condens. Matter 2003, 15, 1365.
[10] Storm, A. J.; Storm, C.; Chen, J. H.; Zandbergen, H.; Joanny, J. F.; Dekker, C. Nano Lett. 2005, 5, 1193.
[11] Ying, Y. L.; Cao, C.; Long, Y. T. Analyst 2014, 139, 3826.
[12] Oukhaled, A.; Bacri, L.; Pastoriza-Gallego, M.; Betton, J. M.; Pelta, J. ACS Chem. Biol. 2012, 7, 1935.
[13] Kasianowicz, J. J.; Brandin, E.; Branton, D.; Deamer, D. W. Proceedings of the National Academy of Sciences of the United States of America 1996, 93, 13770.
[14] Wendell, D.; Jing, P.; Geng, J.; Subramaniam, V.; Lee, T. J.; Montemagno, C.; Guo, P. Nat. Nanotechnol. 2009, 4, 765.
[15] Cao, C.; Liao, D.-F.; Ying, Y.-L.; Long, Y.-T. Acta Chim. Sinica 2016, 74, 734(in Chinese). (曹婵, 廖冬芳, 应佚伦, 龙亿涛, 化学学报, 2016, 74, 734.)
[16] Ma, J.; Qiu, Y. H.; Yuan, Z. S.; Zhang, Y.; Sha, J. J.; Liu, L.; Sun, L. T.; Ni, Z. H.; Yi, H.; Li, D. Y.; Chen, Y. F. Phys. Rev. E 2015, 92, 022719.
[17] Wang, Y.; Yu, X.-F.; Liu, Y.-Y.; Xie, X.; Cheng, X.-L.; Huang, S.-M.; Wang, Z.-M. Acta Chim. Sinica 2014, 72, 378(in Chinese). (王跃, 余旭丰, 刘芸芸, 谢骁, 程秀兰, 黄少铭, 王志民, 化学学报, 2014, 72, 378.)
[18] Jiang, Y.-N.; Guo, W. Sci. Bull. 2015, 60, 491.
[19] Guo, W.; Jiang, L. Sci. China Matter 2014, 57, 2.
[20] Su, B.; Guo, W.; Jiang L. Small 2015, 11, 1072.
[21] Wu, L.-Z.; Liu, Y.-Q.; Liu, W.; Chen, D.; Chen, H. Acta Biophys. Sinica 2014, 5, 360(in Chinese). (武灵芝, 刘玉棋, 刘伟, 陈栋, 陈豪, 生物物理学报, 2014, 5, 360.)
[22] Farimani, A. B.; Heiranian, M.; Min, K.; Aluru, N. R. J. Phys. Chem. Lett. 2017, 8, 1670.
[23] Freedman, K. J.; Jurgens, M.; Prabhu, A.; Ahn, C. W.; Jemth, P.; Edel, J. B.; Kim, M. J. Anal. Chem. 2011, 83, 5137.
[24] Niedzwiecki, D. J.; Grazul, J.; Movileanu, L. J. Am. Chem. Soc. 2010, 132, 10816.
[25] Ying, Y.-L.; Zhang, X.; Liu, Y.; Xue, M.-Z.; Li, H.-L.; Long, Y.-T. Acta Chim. Sinica 2013, 71, 44(in Chinese). (应佚伦, 张星, 刘钰, 薛梦竹, 李洪林, 龙亿涛, 化学学报, 2013, 71, 44.)
[26] Ying, Y.-L.; Long, Y.-T. Sci. Chi. Chem. 2017, 60, doi:10.1007/s11426-017-9082-5.
[27] Reiner, J. E.; Balijepalli, A.; Robertson, J. W. F.; Campbell, J.; Suehle, J.; Kasianowicz, J. J. Chem. Rev. 2012, 112, 6431.
[28] Saleh, O. A.; Sohn, L. L. Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 820.
[29] Takakura, T.; Yanagi, I.; Goto, Y.; Ishige, Y.; Kohara, Y. Appl. Phys. Lett. 2016, 108, 123701.
[30] Alzghoul, S.; Hailat, M.; Zivanovic, S.; Que, L.; Shah, G. V. Biosens. Bioelectron. 2016, 77, 491.
[31] Kwak, D. K.; Chae, H.; Lee, M. K.; Ha, J. H.; Goyal, G.; Kim, M. J.; Kim, K. B.; Chi, S. W. Angew Chem., Int. Ed. 2016, 55, 5713.
[32] Wang, S.; Haque, F.; Rychahou, P. G.; Evers, B. M.; Guo, P. ACS Nano 2013, 7, 9814.
[33] Han, A.; Creus, M.; Schurmann, G.; Linder, V.; Ward, T. R.; de Rooij, N. F.; Staufer, U. Anal. Chem. 2008, 80, 4651.
[34] Freedman, K. J.; Bastian, A. R.; Chaiken, I.; Kim, M. J. Small 2013, 9, 750.
[35] Peters, T. Adv. Protein. Chem. 1985, 37, 161.
[36] Li, J. L.; Talaga, D. S. J. Phys.-Condens. Matter 2010, 22, 454.
[37] Ling, D. Y.; Ling, X. S. J. Phys.-Condens. Matter 2013, 25, 375102.
[38] Li, J. L.; Fologea, D.; Rollings, R.; Ledden, B. Protein and Peptide Letters. 2014, 21, 256.
[39] Deblois, R. W.; Bean, C. P. Rev. Sci. Instrum. 1970, 41, 909.
[40] Han, A. P.; Schurmann, G.; Mondin, G.; Bitterli, R. A.; Hegelbach, N. G.; de Rooij, N. F.; Staufer, U. Appl. Phys. Lett. 2006, 88, 093901.
[41] Larkin, J.; Henley, R. Y.; Muthukumar, M.; Rosenstein, J. K.; Wanunu, M. Biophys. J. 2014, 106, 696.

Outlines

/