Review

Peptide Supramolecular Self-Assembly:Structural Precise Regulation and Functionalization

  • Wang Juan ,
  • Zou Qianli ,
  • Yan Xuehai
Expand
  • National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190

Received date: 2017-06-18

  Online published: 2017-09-04

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21522307, 21473208 and 91434103).

Abstract

Biomolecular self-assembly plays a significant role for physiological function. Inspired by this, the construction of functional structures and architectures by biomolecular self-assembly has attracted tremendous attentions. Peptides can be assembled into diverse nanostructures, exhibiting important potential for biomedical and green-life technology applications. How to achieve the structural precise regulation of various nanostructures and functionalization by precise control of structures is the two key challenges in the field of peptide self-assembly. As the assembly process is a spontaneous thermodynamic and kinetic driven process, and is determined by the cooperation of various intermolecular non-covalent interactions, including hydrogen-bonding, electrostatic, π-π stacking, hydrophobic, and van der Waals interactions, the reasonable regulation of these non-covalent interactions is a critical pathway to achieve the two goals. To modulate these non-covalent interactions, one of the common used methods is to change the kinetic factors/external environment, including pH, ionic strength, and temperature, etc. These kinetic factors can effectively influence the interactions between peptides and solvents, resulting in dynamic and responsive variations in structures through multiple length scales and ultimate morphologies. However, the fatal disadvantage is the lacking of the precise regulation of assembled structures in the molecular level with consideration of both thermodynamics and kinetics. Compared with changing the external environment, the specific and precise molecular design is more favorable to achieve the structural precise regulation. The molecular structures and the component of building blocks can be rationally designed. For example, one can modulate the interactions between two or more than two building blocks by changing the physicochemical properties of each building block, enabling self-assembly and structural diversity of the final nanostructures. Furthermore, by combining peptides and other functional biomolecules (such as porphyrins), the functionalization of assembled nanostructures and architectures can be achieved more easily and flexibly. In this review, we will focus on the structural precise regulation and the functionalization of assembled peptide nanostructures. It is believed that the precise regulation of nanostructures is promising to promote the development of peptide-based materials towards green-life technology applications.

Cite this article

Wang Juan , Zou Qianli , Yan Xuehai . Peptide Supramolecular Self-Assembly:Structural Precise Regulation and Functionalization[J]. Acta Chimica Sinica, 2017 , 75(10) : 933 -942 . DOI: 10.6023/A17060272

References

[1] Mahadevi, A. S.; Sastry, G. N. Chem. Rev. 2016, 116, 2775.
[2] Gao, Y.; Hu, J.; Ju, Y. Acta Chim. Sinica 2016, 74, 312. (高玉霞, 胡君, 巨勇, 化学学报, 2016, 74, 312.)
[3] Boyle, A. L.; Woolfson, D. N. Chem. Soc. Rev. 2011, 40, 4295.
[4] Smith, K. H.; Tejeda-Montes, E.; Poch, M.; Mata, A. Chem. Soc. Rev. 2011, 40, 4563.
[5] Fleming, S.; Ulijn, R. V. Chem. Soc. Rev. 2014, 43, 8150.
[6] Hauser, C. A.; Zhang, S. Nature 2010, 468, 516.
[7] De Santis, E.; Ryadnov, M. G. Chem. Soc. Rev. 2015, 44, 8288.
[8] Ulijn, R. V.; Woolfson, D. N. Chem. Soc. Rev. 2010, 39, 3349.
[9] Ariga, K.; Ji, Q.; Nakanishi, W.; Hill, J. P.; Aono, M. Mater. Horiz. 2015, 2, 406.
[10] Yang, L.; Tan, X.; Wang, Z.; Zhang, X. Chem. Rev. 2015, 115, 7196.
[11] Ariga, K.; Li, J.; Fei, J.; Ji, Q.; Hill, J. P. Adv. Mater. 2016, 28, 1251.
[12] Wang, J.; Liu, K.; Xing, R.; Yan, X. Chem. Soc. Rev. 2016, 45, 5589.
[13] Hamley, I. W. Angew. Chem., Int. Ed. 2014, 53, 6866.
[14] Dasgupta, A.; Mondal, J. H.; Das, D. RSC Adv. 2013, 3, 9117.
[15] Hauser, C. A. E.; Zhang, S. Chem. Soc. Rev. 2010, 39, 2780.
[16] Yan, X.; Cui, Y.; He, Q.; Wang, K.; Li, J.; Mu, W.; Wang, B.; Ouyang, Z.-C. Chem. Eur. J. 2008, 14, 5974.
[17] Levin, A.; Mason, T. O.; Adler-Abramovich, L.; Buell, A. K.; Meisl, G.; Galvagnion, C.; Bram, Y.; Stratford, S. A.; Dobson, C. M.; Knowles, T. P. J.; Gazit, E. Nat. Commun. 2014, 5, 5219.
[18] Korevaar, P. A.; Newcomb, C. J.; Meijer, E. W.; Stupp, S. I. J. Am. Chem. Soc. 2014, 136, 8540.
[19] Kim, J.; Han, T. H.; Kim, Y.-I.; Park, J. S.; Choi, J.; Churchill, D. C.; Kim, S. O.; Ihee, H. Adv. Mater. 2010, 22, 583.
[20] Wang, M.; Du, L.; Wu, X.; Xiong, S.; Chu, P. K. ACS Nano 2011, 5, 4448.
[21] Wang, Y.; Huang, R.; Qi, W.; Xie, Y.; Wang, M.; Su, R.; He, Z. Small 2015, 11, 2893.
[22] Li, Q.; Jia, Y.; Dai, L. R.; Yang, Y.; Li, J. B. ACS Nano 2015, 9, 2689.
[23] Mason, T. O.; Chirgadze, D. Y.; Levin, A.; Adler-Abramovich, L.; Gazit, E.; Knowles, T. P. J.; Buell, A. K. ACS Nano 2014, 8, 1243.
[24] Moyer, T. J.; Finbloom, J. A.; Chen, F.; Toft, D. J.; Cryns, V. L.; Stupp, S. I. J. Am. Chem. Soc. 2014, 136, 14746.
[25] Wang, Y.; Qi, W.; Huang, R.; Yang, X.; Wang, M.; Su, R.; He, Z. J. Am. Chem. Soc. 2015, 137, 7869.
[26] Zhao, Y. R.; Deng, L.; Wang, J. Q.; Xu, H.; Lu, J. R. Langmuir 2015, 31, 12975.
[27] Cai, C. H.; Lin, J. P.; Lu, Y. Q.; Zhang, Q.; Wang, L. Q. Chem. Soc. Rev. 2016, 45, 5985.
[28] Shen, Y.; Fu, X.; Fu, W.; Li, Z. Chem. Soc. Rev. 2015, 44, 612.
[29] Xu, J.; Wang, Z.; Zhang, X. Acta Chim. Sinica 2016, 74, 467. (徐俊, 王治强, 张希, 化学学报, 2016, 74, 467.)
[30] Shao, Y.; Li, C.; Zhou, X.; Chen, P.; Yang, Z.; Li, Z.; Liu, D. Acta Chim. Sinica 2015, 73, 815. (邵昱, 李闯, 周旭, 陈平, 杨忠强, 李志波, 刘冬生, 化学学报, 2015, 73, 815.)
[31] Wang, J.; Sun, Y.; Dai, J.; Zhao, Y.; Cao, M.; Wang, D.; Xu, H. Acta Phys.-Chim. Sin. 2015, 31, 1365. (王继乾, 孙英杰, 代景茹, 赵玉荣, 曹美文, 王栋, 徐海, 物理化学学报, 2015, 31, 1365.)
[32] Li, H.; Wang, J.; Ni, Y.; Zhou, Y.; Yan, D. Acta Chim. Sinica 2016, 74, 415. (李惠梅, 王洁, 倪云洲, 周永丰, 颜德岳, 化学学报, 2016, 74, 415.)
[33] Yuan, D.; Xu, B. J. Mater. Chem. B 2016, 4, 5638.
[34] Jia, Y.; Li, Q.; Li, J. Chin. Sci. Bull. 2017, 62, 469. (贾怡, 李琦, 李峻柏, 科学通报, 2017, 62, 469.)
[35] Li, Y.; Mao, C.; Deng, Z. Chin. J. Chem. 2017, 35, 801.
[36] Zhou, P.; Deng, L.; Wang, Y. T.; Lu, J. R.; Xu, H. Langmuir 2016, 32, 4662.
[37] Zhao, Y. R.; Deng, L.; Yang, W.; Wang, D.; Pambou, E.; Lu, Z. M.; Li, Z. Y.; Wang, J. Q.; King, S.; Rogers, S.; Xu, H.; Lu, J. R. Chem. Eur. J. 2016, 22, 11394.
[38] Zhao, Y. R.; Wang, J. Q.; Deng, L.; Zhou, P.; Wang, S. J.; Wang, Y. T.; Xu, H.; Lu, J. R. Langmuir 2013, 29, 13457.
[39] Wang, M.; Zhou, P.; Wang, J. Q.; Zhao, Y. R.; Ma, H. C.; Lu, J. R.; Xu, H. J. Am. Chem. Soc. 2017, 139, 4185.
[40] Wang, J.; Liu, K.; Yan, L.; Wang, A.; Bai, S.; Yan, X. ACS Nano 2016, 10, 2138.
[41] Yuan, D.; Du, X.; Shi, J.; Zhou, N.; Zhou, J.; Xu, B. Angew. Chem., Int. Ed. 2015, 54, 5705.
[42] Zhao, F. F.; Shen, G. Z.; Chen, C. J.; Xing, R. R.; Zou, Q. L.; Ma, G. H.; Yan, X. H. Chem. Eur. J. 2014, 20, 6880.
[43] Zhang, N.; Zhao, F. F.; Zou, Q. L.; Li, Y. X.; Ma, G. H.; Yan, X. H. Small 2016, 12, 5936.
[44] Zou, Q.; Zhang, L.; Yan, X.; Wang, A.; Ma, G.; Li, J.; Möhwald, H.; Mann, S. Angew. Chem., Int. Ed. 2014, 53, 2366.
[45] Liu, K.; Xing, R. R.; Chen, C. J.; Shen, G. Z.; Yan, L. Y.; Zou, Q. L.; Ma, G. H.; Mohwald, H.; Yan, X. H. Angew. Chem., Int. Ed. 2015, 54, 500.
[46] Liu, K.; Kang, Y.; Ma, G. H.; Mohwald, H.; Yan, X. H. Phys. Chem. Chem. Phys. 2016, 18, 16738.
[47] Zou, Q. L.; Abbas, M.; Zhao, L. Y.; Li, S. K.; Shen, G. Z.; Yan, X. H. J. Am. Chem. Soc. 2017, 139, 1921.
[48] Xing, R. R.; Jiao, T. F.; Yan, L. Y.; Ma, G. H.; Liu, L.; Dai, L. R.; Li, J. B.; Mohwald, H.; Yan, X. H. ACS Appl. Mater. Interfaces 2015, 7, 24733.
[49] Xing, R. R.; Liu, K.; Jiao, T. F.; Zhang, N.; Ma, K.; Zhang, R. Y.; Zou, Q. L.; Ma, G. H.; Yan, X. H. Adv. Mater. 2016, 28, 3669.
[50] Yan, X.; Zhu, P.; Fei, J.; Li, J. Adv. Mater. 2010, 22, 1283.
[51] Li, J. F.; Li, X. D.; Xu, J.; Wang, Y.; Wu, L. X.; Wang, Y. Q.; Wang, L. Y.; Lee, M.; Li, W. Chem. Eur. J. 2016, 22, 15751.
[52] Li, J. F.; Chen, Z. J.; Zhou, M. C.; Jing, J. B.; Li, W.; Wang, Y.; Wu, L. X.; Wang, L. Y.; Wang, Y. Q.; Lee, M. Angew. Chem., Int. Ed. 2016, 55, 2592.
[53] Adhikari, B.; Nanda, J.; Banerjee, A. Soft Matter 2011, 7, 8913.
[54] Ma, M.; Kuang, Y.; Gao, Y.; Zhang, Y.; Gao, P.; Xu, B. J. Am. Chem. Soc. 2010, 132, 2719.
[55] Zhou, J.; Du, X.; Gao, Y.; Shi, J.; Xu, B. J. Am. Chem. Soc. 2014, 136, 2970.
[56] Li, Y. X.; Yan, L. Y.; Liu, K.; Wang, J.; Wang, A. H.; Bai, S.; Yan, X. H. Small 2016, 19, 2575.
[57] Li, Q.; Ma, H. C.; Jia, Y.; Li, J. B.; Zhu, B. H. Chem. Commun. 2015, 51, 7219.
[58] Wang, J.; Shen, G. Z.; Ma, K.; Jiao, T. F.; Liu, K.; Yan, X. H. Phys. Chem. Chem. Phys. 2016, 18, 30926.
[59] Fei, J. B.; Zhang, H.; Wang, A. H.; Qin, C. C.; Xue, H. M.; Li, J. B. Adv. Healthcare Mater. 2017, 6, 1601198.
[60] Yan, X.; Li, J.; Möhwald, H. Adv. Mater. 2011, 23, 2796.
[61] Liu, K.; Xing, R. R.; Li, Y. X.; Zou, Q. L.; Möhwald, H.; Yan, X. H. Angew. Chem., Int. Ed. 2016, 55, 12503.
[62] Liu, K.; Yuan, C.; Zou, Q.; Xie, Z.; Yan, X. Angew. Chem., Int. Ed. 2017, 56, 7876.
[63] Li, N.; Guo, C. H.; Duan, Z. Y.; Yu, L. Z.; Luo, K.; Lu, J.; Gu, Z. W. J. Mater. Chem. B 2016, 4, 3760.
[64] Zhang, D.; Qi, G. B.; Zhao, Y. X.; Qiao, S. L.; Yang, C.; Wang, H. Adv. Mater. 2015, 27, 6125.
[65] Liu, Y.; Zhang, D.; Qiao, Z. Y.; Qi, G. B.; Liang, X. J.; Chen, X. G.; Wang, H. Adv. Mater. 2015, 27, 5034.
[66] Abbas, M.; Zou, Q. L.; Li, S. K.; Yan, X. H. Adv. Mater. 2017, 29, 1605021.
[67] Han, K.; Zhang, W. Y.; Zhang, J.; Lei, Q.; Wang, S. B.; Liu, J. W.; Zhang, X. Z.; Han, H. Y. Adv. Funct. Mater. 2016, 26, 4351.
[68] Ma, K.; Xing, R. R.; Jiao, T. F.; Shen, G. Z.; Chen, C. J.; Li, J. B.; Yan, X. H. ACS Appl. Mater. Interfaces 2016, 8, 30759.
[69] Liu, K.; Xing, R. R.; Zou, Q. L.; Ma, G. H.; Möhwald, H.; Yan, X. H. Angew. Chem., Int. Ed. 2016, 55, 3036.
[70] Sun, J. J.; Guo, Y.; Xing, R. R.; Jiao, T. F.; Zou, Q. L.; Yan, X. H. Colloids Surf., A 2017, 514, 155.
[71] Chen, C. J.; Li, S. K.; Liu, K.; Ma, G. H.; Yan, X. H. Small 2016, 12, 4719.
[72] Qin, X.; Xie, W.; Tian, S.; Cai, J.; Yuan, H.; Yu, Z.; Butterfoss, G. L.; Khuong, A. C.; Gross, R. A. Chem. Commun. 2013, 49, 4839.
[73] Webber, M. J.; Newcomb, C. J.; Bitton, R.; Stupp, S. I. Soft Matter 2011, 7, 9665.
[74] Guilbaud, J.-B.; Rochas, C.; Miller, A. F.; Saiani, A. Biomacromolecules 2013, 14, 1403.
[75] Yang, Z.; Liang, G.; Xu, B. Acc. Chem. Res. 2008, 41, 315.
[76] Gao, Y.; Yang, Z.; Kuang, Y.; Ma, M.-L.; Li, J.; Zhao, F.; Xu, B. Biopolymers 2010, 94, 19.
[77] Zhou, J.; Du, X.; Yamagata, N.; Xu, B. J. Am. Chem. Soc. 2016, 138, 3813.
[78] Gao, Y.; Shi, J.; Yuan, D.; Xu, B. Nat. Commun. 2012, 3, 1033.
[79] Li, X.; Du, X.; Li, J.; Gao, Y.; Pan, Y.; Shi, J.; Zhou, N.; Xu, B. Langmuir 2012, 28, 13512.
[80] Shi, J.; Du, X.; Yuan, D.; Zhou, J.; Zhou, N.; Huang, Y.; Xu, B. Biomacromolecules 2014, 15, 3559.
[81] Yuan, C.; Li, S.; Zou, Q.; Ren, Y.; Yan, X. Phys. Chem. Chem. Phys. 2017, 10. 1039/c7cp01923h.

Outlines

/