Review

Research Progress and Perspectives on High Voltage, Flame Retardant Electrolytes for Lithium-Ion Batteries

  • Xia Lan ,
  • Yu Linpo ,
  • Hu Di ,
  • Chen Z. George
Expand
  • Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo 315100

Received date: 2017-06-28

  Online published: 2017-09-06

Supported by

Project supported by the National Natural Science Foundation of China (No. 21503246), the Ningbo Municipal Government (3315 Plan and the IAMET Special Fund, No. 2014A35001-1), Ningbo Natural Science Foundation Programme (Nos. 2017A610022, 2016A610114, 2016A610115), and the Project of Science and Technology Department of Zhejiang Province (Nos. 2016C31023、No. 2017C31104).

Abstract

The electrolyte is an indispensable constituent in lithium ion batteries, and its role conducts electricity by means of the transportation of charge carries between the pair of electrodes. Its properties directly affect the energy density, cycle life and safety of the battery. However, there are two major challenges to using carbonate-based electrolytes in recent lithium ion batteries (LIBs) to further increase the energy density of the devices without compromising the safety. One is that carbonate-based electrolytes are not sufficiently stable at the positive electrode, and the other is their relatively high flammability. Therefore, developing high voltage and flame retardant electrolytes for LIBs is highly desired. Herein, we review the recent progress and challenges in new electrolytes, focusing on high-voltage electrolytes, flame retardant electrolytes and highly concentrated electrolytes. Among the reported electrolytes, highly concentrated electrolytes are worth a special attention, showing various unusual functionalities, for example, high oxidative stability, low volatility, high reductive stability, and non-corrosive to Al. These special properties are totally different from that of the conventional 1 mol•L-1 LiPF6/EC-based electrolytes, which are result from solution structures. A discussion is also provided in this review on the prospects of further development of new electrolytes for LIBs.

Cite this article

Xia Lan , Yu Linpo , Hu Di , Chen Z. George . Research Progress and Perspectives on High Voltage, Flame Retardant Electrolytes for Lithium-Ion Batteries[J]. Acta Chimica Sinica, 2017 , 75(12) : 1183 -1195 . DOI: 10.6023/A17060284

References

[1] Aurbach, D.; Talyosef, Y.; Markovsky, B.; Markevich, E.; Zinigrad, E.; Asraf, L.; Gnanaraj, J. S.; Kim, H. J. Electrochim. Acta 2004, 50, 247.
[2] Markovsky, B.; Amalraj, F.; Gottlieb, H. E.; Gofer, Y.; Martha, S. K.; Aurbach, D. J. Electrochem. Soc. 2010, 157, A423.
[3] Erickson, E. M.; Markevich, E.; Salitra, G.; Sharon, D.; Hirshberg, D.; de la Llave, E.; Shterenberg, I.; Rozenman, A.; Frimer, A.; Aurbach, D. J. Electrochem. Soc. 2015, 162, A2424.
[4] Xu, K. Chem. Rev. 2004, 104, 4303.
[5] Hu, M.; Pang, X.; Zhou, Z. J. Power Sources 2013, 237, 229.
[6] Xu, K. Chem. Rev. 2014, 114, 11503.
[7] Wan, Y.; Zheng, Q.-J.; Lin, D.-M. Acta Chim. Sinica 2014, 72, 537. (万洋, 郑荞佶, 赁敦敏, 化学学报, 2014, 72, 537.)
[8] Xing, L.; Li, W.; Wang, C.; Gu, F.; Xu, M.; Tan, C.; Yi, J. J. Phys. Chem. B 2009, 113, 16596.
[9] Yang, L.; Ravdel, B.; Lucht, B. L. Electrochem. Solid-State Lett. 2010, 13, A95.
[10] Kim, J.-H.; Pieczonka, N. P. W.; Li, Z.; Wu, Y.; Harris, S.; Powell, B. R. Electrochim. Acta 2013, 90, 556.
[11] Pieczonka, N. P. W.; Liu, Z.; Lu, P.; Olson, K. L.; Moote, J.; Powell, B. R.; Kim, J.-H. J. Phys. Chem. C 2013, 117, 15947.
[12] Yao, X. L.; Xie, S.; Chen, C. H.; Wang, Q. S.; Sun, J. H.; Li, Y. L.; Lu, S. X. J. Power Sources 2005, 144, 170.
[13] Zhang, H. P.; Xia, Q.; Wang, B.; Yang, L. C.; Wu, Y. P.; Sun, D. L.; Gan, C. L.; Luo, H. J.; Bebeda, A. W.; Ree, T. v. Electrochem. Commun. 2009, 11, 526.
[14] Hyung, Y. E.; Vissers, D. R.; Amine, K. J. Power Sources 2003, 119-121, 383.
[15] Mandal, B. K.; Padhi, A. K.; Shi, Z.; Chakraborty, S.; Filler, R. J. Power Sources 2006, 161, 1341.
[16] Shim, E.-G.; Nam, T.-H.; Kim, J.-G.; Kim, H.-S.; Moon, S.-I. J. Power Sources 2007, 172, 901.
[17] Ren, Y.; Wen, Y.; Lian, F.; Qiu, W.-H. Chemistry 2015, 78, 107. (任岩, 文焱, 连芳, 丑卫华, 化学通报, 2015, 78, 107.)
[18] Dalavi, S.; Xu, M.; Knight, B.; Lucht, B. L. Electrochem. Solid-State Lett. 2011, 15, A28.
[19] Yang, L.; Markmaitree, T.; Lucht, B. L. J. Power Sources 2011, 196, 2251.
[20] Hu, M.; Wei, J.; Xing, L.; Zhou, Z. J. Appl. Electrochem. 2012, 42, 291.
[21] Li, Z. D.; Zhang, Y. C.; Xiang, H. F.; Ma, X. H.; Yuan, Q. F.; Wang, Q. S.; Chen, C. H. J. Power Sources 2013, 240, 471.
[22] von Cresce, A.; Xu, K. J. Electrochem. Soc. 2011, 158, A337.
[23] von Cresce, A.; Xu, K. ECS Transactions 2012, 41, 17.
[24] Rong, H.; Xu, M.; Xing, L.; Li, W. J. Power Sources 2014, 261, 148.
[25] Song, Y.-M.; Han, J.-G.; Park, S.; Lee, K. T.; Choi, N.-S. J. Mater. Chem. A 2014, 2, 9506.
[26] Yan, G.; Li, X.; Wang, Z.; Guo, H.; Wang, C. J. Power Sources 2014, 248, 1306.
[27] Zhang, J.; Wang, J.; Yang, J.; NuLi, Y. Electrochim. Acta 2014, 117, 99.
[28] Yan, G.; Li, X.; Wang, Z.; Guo, H.; Xiong, X. J. Power Sources 2014, 263, 231.
[29] Felix, F.; Cheng, J.-H.; Hy, S.; Rick, J.; Wang, F. M.; Hwang, B.-J. J. Phys. Chem. C 2013, 117(44), 22619.
[30] Lee, H.; Choi, S.; Choi, S.; Kim, H.-J.; Choi, Y.; Yoon, S.; Cho, J.-J. Electrochem. Commun. 2007, 9, 801.
[31] Tarnopolskiy, V.; Kalhoff, J.; Nádherná, M.; Bresser, D.; Picard, L.; Fabre, F.; Rey, M.; Passerini, S. J. Power Sources 2013, 236, 39.
[32] Bouayad, H.; Wang, Z.; Dupré, N.; Dedryvère, R.; Foix, D.; Franger, S.; Martin, J.-F.; Boutafa, L.; Patoux, S.; Gonbeau, D.; Guyomard, D. J. Phys. Chem. C 2014, 118(9), 4634.
[33] Pieczonka, N. P. W.; Yang, L.; Balogh, M. P.; Powell, B. R.; Chemelewski, K. R.; Manthiram, A.; Krachkovskiy, S. A.; Goward, G. R.; Liu, M.; Kim, J.-H. J. Phys. Chem. C 2013, 117(44), 22603.
[34] Xu, K.; Zhang, S.; Jow, T. R. Electrochem. Solid-State Lett. 2003, 6, A117.
[35] Wu, Q.; Lu, W.; Miranda, M.; Honaker-Schroeder, T. K.; Lakhsassi, K. Y.; Dees, D. Electrochem. Commun. 2012, 24, 78.
[36] Xu, M.; Zhou, L.; Dong, Y.; Chen, Y.; Demeaux, J.; MacIntosh, A. D.; Garsuch, A.; Lucht, B. L. Energy Environ. Sci. 2016, 9, 1308.
[37] Ue, M.; Ida, K.; Mori, S. J. Electrochem. Soc. 1994, 141, 2989.
[38] Ue, M.; Takeda, M.; Takehara, M.; Mori, S. J. Electrochem. Soc. 1997, 144, 2684.
[39] Nanini-Maury, E.; Swiatowska, J.; Chagnes, A.; Zanna, S.; Tran-Van, P.; Marcus, P.; Cassir, M. Electrochim. Acta 2014, 115, 223.
[40] Nagahama, M.; Hasegawa, N.; Okada, S. J. Electrochem. Soc. 2010, 157, A748.
[41] Kavan L. Chem. Rev. 1997, 97, 3061.
[42] Abu-Lebdeh, Y.; Davidson, I. J. Electrochem. Soc. 2009, 156, A60.
[43] Abu-Lebdeh, Y.; Davidson, I. J. Power Sources 2009, 189, 576.
[44] Gmitter, A. J.; Plitz, I.; Amatucci, G. G. J. Electrochem. Soc. 2012, 159, A370.
[45] Xu, K.; Angell, C. A. J. Electrochem. Soc. 1998, 145, L70.
[46] Sun, X.-G.; Angell, C. A. Solid State Ionics 2004, 175, 257.
[47] Sun, X.-G.; Angell, C. A. Electrochem. Commun. 2005, 7, 261.
[48] Sun, X.; Angell, C. A. Meeting Abstracts 2008, MA2008-01, 162.
[49] Watanabe, Y.; Kinoshita, S.-i.; Wada, S.; Hoshino, K.; Morimoto, H.; Tobishima, S.-i. J. Power Sources 2008, 179, 770.
[50] Sun, X.; Angell, C. A. Electrochem. Commun. 2009, 11, 1418.
[51] Mao, L.; Li, B.; Cui, X.; Zhao, Y.; Xu, X.; Shi, X.; Li, S.; Li, F. Electrochim. Acta 2012, 79, 197.
[52] Li, C.; Zhao, Y.; Zhang, H.; Liu, J.; Jing, J.; Cui, X.; Li, S. Electrochim. Acta 2013, 104, 134.
[53] Wu, F.; Xiang, J.; Li, L.; Chen, J.; Tan, G.; Chen, R. J. Power Sources 2012, 202, 322.
[54] Wu, F.; Zhu, Q.; Li, L.; Chen, R.; Chen, S. J. Mater. Chem. A 2013, 1, 3659.
[55] Abouimrane, A.; Belharouak, I.; Amine, K. Electrochem. Commun. 2009, 11, 1073.
[56] Xing, L.; Vatamanu, J.; Borodin, O.; Smith, G. D.; Bedrov, D. J. J. Phys. Chem. C 2012, 116, 23871.
[57] Sakaebe, H.; Matsumoto, H. Electrochem. Commun. 2003, 5, 594.
[58] Matsumoto, H.; Sakaebe, H.; Tatsumi, K. J. Power Sources 2005, 146, 45.
[59] Galiński, M.; Lewandowski, A.; Stepniak, I. Electrochim. Acta 2006, 51, 5567.
[60] Armand, M.; Endres, F.; MacFarlane, D. R.; Ohno, H.; Scrosati, B. Nat. Mater. 2009, 8, 621.
[61] Seki, S.; Serizawa, N.; Takei, K.; Miyashiro, H.; Watanabe, M. Meeting Abstracts 2011, MA2011-02, 1277.
[62] Le, M.-L.-P.; Alloin, F.; Strobel, P.; Leprêtre, J.-C.; Cointeaux, L.; Valle, C. Ionics 2012, 18, 817.
[63] Dokko, K.; Tachikawaa, N.; Yamauchia, K.; Tsuchiyaa, M.; Yamazakia, A.; Takashimaa, E.; Parka, J.-W.; Uenoa, K.; Sekib, S.; Serizawab, N.; Watanabea, M. J. Electrochem. Soc. 2013, 160, A1304.
[64] Borgel, V.; Markevich, E.; Aurbach, D.; Semrau, G.; Schmidt, M. J. Power Sources 2009, 189, 331.
[65] Xiang, J.; Wu, F.; Chen, R.; Li, L.; Yu, H. J. Power Sources 2013, 233, 115.
[66] Mun, J.; Yim, T.; Park, K.; Ryu, J. H.; Kim, Y. G.; Oh, S. M. J. Electrochem. Soc. 2011, 158, A453.
[67] Kitagawa, T.; Azuma, K.; Koh, M.; Yamauchi, A.; Kagawa, M.; Sakata, H.; Miyawaki, H.; Nakazono, A.; Arima, H.; Yamagata, M. Electrochemistry 2010, 78, 345.
[68] Hu, L.; Zhang, Z.; Amine, K. Electrochem. Commun. 2013, 35, 76.
[69] Markevich, E.; Salitra, G.; Fridman, K.; Sharabi, R.; Gershinsky, G.; Garsuch, A.; Semrau, G.; Schmidt, M. A.; Aurbach, D. Langmuir 2014, 30, 7414.
[70] Zhang, Z.; Hu, L.; Wu, H.; Weng, W.; Koh, M.; Redfern, P. C.; Curtiss, L. A.; Amine, K. Energy Environ. Sci. 2013, 6, 1806.
[71] Achiha, T.; Nakajima, T.; Ohzawa, Y.; Koh, M.; Yamauchi, A.; Kagawa, M.; Aoyama, H. J. Electrochem. Soc. 2010, 157, A707.
[72] Xia, L.; Xia, Y.; Wang, C.; Hu, H.; Lee, S.; Yu, Q.; Chen, H.; Liu, Z. ChemElectroChem 2015, 2, 1707.
[73] Yan, G.; Li, X.; Wang, Z.; Guo, H.; Wang, J. J. Phys. Chem. C 2014, 118, 6586.
[74] Chen, Z.; Qin, Y.; Ren, Y.; Lu, W.; Orendorff, C. E.; Roth, P.; Amine, K. Energy Environ. Sci. 2011, 4, 4023.
[75] Wong, D. H. C.; Thelen, J. L.; Fu, Y.; Devaux, D.; Pandya, A. A.; Battaglia, V. S.; Balsara, N. P.; Desimone, J. M. PNAS 2014, 111, 3327.
[76] Arai, J. J. Electrochem. Soc. 2003, 150, A219.
[77] Naoi, K.; Iwama, E.; Ogihara, N.; Nakamura, Y.; Segawa, H.; Ino, Y. J. Electrochem. Soc. 2009, 156, A272.
[78] Naoi, K.; Iwama, E.; Honda, Y.; Shimodate, F. J. Electrochem. Soc. 2010, 157, A190.
[79] Huang, Q.; Yan, M.-M.; Jiang, Z.-Y. Acta Chim. Sinica 2008, 66, 1. (黄倩, 严曼明, 江志裕, 化学学报, 2008, 66, 1.)
[80] Xia, L. Ph. D. Dissertation, Wuhan University, Wuhan, 2013. (夏兰, 博士论文, 武汉大学, 武汉, 2013.)
[81] Choi, J.-A.; Sun, Y.-K.; Shim, E.-G.; Scrosati, B.; Kim, D.-W. Electrochim. Acta 2011, 56, 10179.
[82] Pan, X.-R.; Lian, F.; Guan, H.-Y.; He, Y. Chemistry 2014, 77, 752. (潘笑容, 连芳, 关红艳, 何逸, 化学通报, 2014, 77, 752.)
[83] Lombardo, L.; Brutti, S.; Navarra, M. A.; Panero, S.; Reale, P. J. Power Sources 2013, 227, 8.
[84] Wang, X.; Yasukawa, E.; Kasuya, S. J. Electrochem. Soc. 2001, 148, A1058.
[85] Feng, J. K.; Ai, X. P.; Cao, Y. L.; Yang, H. X. J. Power Sources 2008, 177, 194.
[86] Jia, H.; Wang, J. L.; Lin, F. J.; Monroe, C. W.; Yang, J.; NuLi, Y. Chem. Commun. 2014, 50, 7011.
[87] Xu, K.; Ding, M. S.; Zhang, S. S.; Allen, J. L.; Jow, T. R. J. Electrochem. Soc. 2002, 149, A622
[88] Wu, B. B.; Pei, F.; Wu, Y.; Mao, R. J.; Ai, X. P.; Yang, H. X.; Cao, Y. L. J. Power Source 2013, 227, 106.
[89] Zeng, Z. Q.; Jiang, X. Y.; Wu, B. B.; Xiao, L. F.; Ai, X. P.; Yang, H. X.; Cao, Y. L. Electrochim. Acta 2014, 129, 300.
[90] Xu, K.; Ding, M. S.; Zhang, S.; Allen, J. L.; Jow, T. R. J. Electrochem. Soc. 2003, 150, A161.
[91] Xu, K.; Zhang, S. S.; Allen, J. L.; Jow, T. R. J. Electrochem. Soc. 2003, 150, A170.
[92] Tsujikawa, T.; Yabuta, K.; Matsushita, T.; Matsushima, T.; Hayashi, K.; Arakawa, M. J. Power Sources 2009, 189, 429.
[93] Zhang, S. S.; Xu, K.; Jow, T. R. J. Power Source 2003, 113, 166.
[94] Xiang, H. F.; Xu, H. Y.; Wang, Z. Z.; Chen, C. H. J. Power Source 2007, 173, 562.
[95] Xia, L.; Xia, Y.-G.; Liu, Z.-P. J. Power Sources 2015, 278, 190.
[96] Allen, C. W.; Bedell, S.; Pennington, W. T.; Cordes, A. W. Inorg. Chem. 1985, 24, 1653.
[97] Feng, J. K.; An, Y. L.; Ci, L. J.; Xiong, S. L. J. Mater. Chem. A 2015, 3, 14539.
[98] Zhou, D.; Li, W.; Tan, C.; Zuo, X.; Huang, Y. J. Power Sources 2008, 184, 589.
[99] Arai, J.; Katayama, H.; Akahoshi, H. J. Electrochem. Soc. 2002, 149, A217.
[100] Arai, J. J. Appl. Electrochem. 2002, 32, 1071.
[101] Arai, J. J. Electrochem. Soc. 2003, 150, A219.
[102] Naoi, K.; Iwama, E.; Ogihara, N.; Nakamura, Y.; Segawa, H.; Ino, Y. J. Electrochem. Soc. 2009, 156, A272.
[103] Naoi, K.; Iwama, E.; Honda, Y.; Shimodate, F. J. Electrochem. Soc. 2010, 157, A190.
[104] Kim, G.-T.; Jeong, S. S.; Joost, M.; Rocca, E.; Winter, M.; Passerini, S.; Balducci, A. J. Power Sources 2011, 196, 2187.
[105] Kim, G.-T.; Jeong, S. S.; Xue, M.-Z.; Balducci, A.; Winter, M.; Passerini, S.; Alessandrini, F.; Appetecchi, G. B. J. Power Sources 2012, 199, 239.
[106] Appetecchi, G. B.; Scaccia, S.; Tizzani, C.; Alessandrini, F.; Passerini, S. J. Electrochem. Soc. 2006, 153, A1685.
[107] Kalhoff, J.; Kim, G.-T.; Passerini, S.; Appetecchi, G. B. J. Power Energy Eng. 2016, 4, 9.
[108] Yang, B.; Li, C.; Zhou, J.; Liu, J.; Zhang, Q. Electrochim. Acta 2014, 148, 39.
[109] Lombardo, L.; Brutti, S.; Navarra, M. A.; Panero, S.; Reale, P. J. Power Sources 2013, 227, 8.
[110] Wilken, S.; Xiong, S.; Scheers, J.; Jacobsson, P.; Johansson, P. J. Power Sources 2015, 275, 935.
[111] Ferrari, S.; Quartarone, E.; Mustarelli, P.; Magistris, A.; Protti, S.; Lazzaroni, S.; Fagnoni, M.; Albini, A. J. Power Sources 2009, 194, 45.
[112] Chen, Z.; Xi, H.; Lim, K. H.; Lee, J. Angew. Chem. Int. Ed. 2013, 52, 13392.
[113] Quinzeni, I.; Ferrari, S.; Quartarone, E.; Tomasi, C.; Fagnoni, M.; Mustarelli, P. J. Power Sources 2013, 237, 204.
[114] Kim, H.-T.; Kang, J.; Mun, J.; Oh, S. M.; Yim, T.; Kim, Y. G. ACS Sustainable Chem. Eng. 2016, 4, 497.
[115] Yamada, Y.; Yamada, A. J. Electrochem. Soc. 2015, 162, A2406.
[116] Yamada, Y.; Furukawa, K.; Sodeyama, K.; Kikuchi, K.; Yaegashi, M.; Tateyama, Y.; Yamada, A. J. Am. Chem. Soc. 2014, 136, 5039.
[117] Doi, T.; Masuhara, R.; Hashinokuchi, M.; Shimizu, Y.; Inaba, M. Electrochim. Acta 2016, 209, 219.
[118] Wang, J.; Yamada, Y.; Sodeyama, K.; Chiang, C. H.; Tateyama, Y.; Yamada, A. Nat. Commun. 2016, 7, 12032.
[119] Matsumoto, K.; Inoue, K.; Nakahara, K.; Yuge, R.; Noguchi, T.; Utsugi, K. J. Power Sources 2013, 231, 234.
[120] McOwen, D. W.; Seo, D. M.; Borodin, O.; Vatamanu, J.; Boyle, P. D.; Henderson, W. A. Energy Environ. Sci. 2014, 7, 416.
[121] Yamada, Y.; Chiang, C. H.; Sodeyama, K.; Wang, J.; Tateyama, Y.; Yamada, A. ChemElectroChem 2015, 2, 1687.
[122] Besenhard, J. O. Carbon 1976, 14, 111.
[123] Besenhard, J. O.; Winter, M.; Yang, J.; Biberacher, W. J. Power Sources 1995, 54, 228.
[124] Arakawa, M.; Yamaki, J. J. Electroanal. Chem. 1987, 219, 273.
[125] Abe, T.; Kawabata, N.; Mizutani, Y.; Inaba, M.; Ogumi, Z. J. Electrochem. Soc. 2003, 150, A257.
[126] Yamada, Y.; Yaegashi, M.; Abe, T.; Yamada, A. Chem. Commun. 2013, 49, 11194.
[127] Sodeyama, K.; Yamada, Y.; Aikawa, K.; Yamada, A.; Tateyama, Y. J. Phys. Chem. C 2014, 118, 14091.
[128] Suo, L.; Hu, Y.-S.; Li, H.; Armand, M.; Chen, L. Nat. Commun. 2013, 4, 1481.
[129] Qian, J.; Henderson, W. A.; Xu, W.; Bhattacharya, P.; Engelhard, M.; Borodin, O.; Zhang, J. G. Nat. Commun. 2015, 6, 6362.
[130] Ma, Q.; Fang, Z.; Liu, P.; Ma, J.; Qi, X.; Feng, W.; Nie, J.; Hu, Y.-S.; Li, H.; Huang, X.; Chen, L.; Zhou, Z. ChemElectroChem 2016, 3, 531.

Outlines

/