Review

Nanoplasmonic Biological Sensing and Imaging

  • Su Yingying ,
  • Peng Tianhuan ,
  • Xing Feifei ,
  • Li Di ,
  • Fan Chunhai
Expand
  • a Department of Chemistry, College of Science, Shanghai University, Shanghai 200444;
    b Division of Physical Biology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800

Received date: 2017-06-30

  Online published: 2017-09-06

Supported by

Project supported by the National Basic Research Program of China (Nos. 2013CB932803, 2013CB933800), the National Key R&D Program of China (Nos. 2016YFA0201200, 2016YFA0400900) and the National Natural Science Foundation of China (Nos. 21675166, 21227804).

Abstract

The localized surface plasmon resonance of metal nanoparticles is the collective oscillation of electrons on particle surface. The localized electromagnetic interaction brings a series of novel functions and applications. Plasmonic nanomaterials have been the significant part of nanophotonics, since its' localized surface plasmon resonance (LSPR) can focus incident phonons on the nanoscale surface. The unique plasmonic property is highly sensitive to their size, shape, coupling between particles as well as local dielectric environment. These properties can be utilized for the development of new biosensing and bioimaging applications. To date, many LSPR sensing strategies have been developed with outstanding measurement capabilities, enabling detection down to the single-molecule level, including LSPR-based sensing, surface-enhanced Raman scattering, metal-enhanced fluorescence, dark-field light-scattering, metal-mediated fluorescence resonance energy transfer. Moreover, the unique optical stability of plasmonic nanoparticles enables them as ideal probes in cellular imaging. Here, recent examples on application of plasmonic nanostructures in sensing and bioimaging are summarized, and perspectives are provided as well.

Cite this article

Su Yingying , Peng Tianhuan , Xing Feifei , Li Di , Fan Chunhai . Nanoplasmonic Biological Sensing and Imaging[J]. Acta Chimica Sinica, 2017 , 75(11) : 1036 -1046 . DOI: 10.6023/A17060289

References

[1] Kawata, S.; Ohtsu, M.; Irie, M. Nano-Optics 2002, 84.
[2] Gramotnev, D. K.; Bozhevolnyi, S. I. Nat. Photonics 2010, 4, 83.
[3] Quidant, R.; Kreuzer, M. Nat. Nanotechnol. 2010, 5, 762.
[4] Ozbay, E. Science 2006, 311, 189.
[5] Schuller, J. A.; Barnard, E. S.; Cai, W.; Jun, Y. C.; White, J. S.; Brongersma, M. L. Nat. Mater. 2010, 9, 193.
[6] (a) Mayer, K. M.; Hafner, J. H. Chem. Rev. 2011, 111, 3828;
(b) Anker, J. N.; Hall, W. P.; Lyandres, O.; Shah, N. C.; Zhao, J.; Van Duyne, R. P. Nat. Mater. 2008, 7, 442;
(c) Jung, L. S.; Chinowsky, T. M.; Mar, M. N.; Yee, S. S.; Campbell, C. T. Langmuir 1998, 14, 5636;
(d) Li, Y.; Jing, C.; Zhang, L.; Long, Y. T. Cheminform 2012, 43, doi:10. 1002/chin. 201218277;
(e) Peng, H.; Tang, H.; Jiang, J. Sci. Chin. Chem. 2016, 59, 783;
(f) Xu, H.; Li, Q.; Wang, L.; He, Y.; Shi, J.; Tang, B.; Fan, C. Chem. Soc. Rev. 2014, 43, 2650.;
(g) Lu, N,; Gao, A.; Zhou, H.; Wang, Y.; Yang, X.; Wang, Y.; Li, T. Chin. J. Chem. 2016, 34, 308.
[7] (a) G, M. Ann. Phys. Berlin 1908, 25, 377;
(b) Bohren, C. F.; Huffman, D. R. Opt. Laser Technol. 1998, 31, 328.
[8] Gans, R. Ann. Phys. Berlin 1912, 342, 881.
[9] Kelly, K. L.; Coronado, E.; Lin, L. Z.; Schatz, G. C. Cheminform 2003, 34, 668.
[10] Choi, Y.; Park, Y.; Kang, T.; Lee, L. P. Nat. Nanotechnol. 2009, 4, 742.
[11] Liu, N.; Tang, M. L.; Hentschel, M.; Giessen, H.; Alivisatos, A. P. Nat. Mater. 2011, 10, 631.
[12] Xu, Y.; Li, K.; Qin, W.; Zhu, B.; Zhou, Z.; Shi, J.; Wang, K.; Hu, J.; Fan, C.; Li, D. Anal. Chem. 2015, 87, 1968.
[13] Qin, W. W.; Wang, S. P.; Li, J.; Peng, T. H.; Xu, Y.; Wang, K.; Shi, J. Y.; Fan, C. H.; Li, D. Nanoscale 2015, 7, 15070.
[14] Li, K.; Qin, W.; Li, F.; Zhao, X.; Jiang, B.; Wang, K.; Deng, S.; Fan, C.; Li, D. Angew. Chem., Int. Ed. 2013, 52, 11542.
[15] Peng, T.; Qin, W.; Wang, K.; Shi, J.; Fan, C.; Li, D. Anal. Chem. 2015, 87, 9403.
[16] Jain, P. K.; Huang, W.; El-Sayed, M. A. Nano Lett. 2007, 7, 2080.
[17] Prodan, E.; Radloff, C.; Halas, N. J.; Nordlander, P. Science 2003, 302, 419.
[18] Lee, S. E.; Alivisatos, P.; Bissell, M. J.; Chen, Q.; Bhat, R.; Petkiewicz, S.; Smith, J.; Correia, A.; Ferry, V. Nano Lett. 2015, 15.
[19] Jun, Y. W.; Sheikholeslami, S.; Hostetter, D. R.; Tajon, C.; Craik, C. S.; Alivisatos, A. P. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 17735.
[20] Kim, S.; Park, J. E.; Hwang, W.; Seo, J.; Lee, Y.; Hwang, J.; Nam, J. J. Am. Chem. Soc. 2017, 139, 3558.
[21] (a) Liu, D.; Chen, W.; Wei, J.; Li, X.; Wang, Z.; Jiang, X. Anal. Chem. 2012, 84, 4185;
(b) Chen, G.; Chen, W.; Yen, Y.; Wang, C.; Chang, H.; Chen, C. Anal. Chem. 2014, 86, 6843;
(c) Sener, G.; Uzun, L.; Denizli, A. Anal. Chem. 2014, 86, 514;
(d) Soh, J. H.; Lin, Y.; Rana, S.; Ying, J. Y.; Stevens, M. M. Anal. Chem. 2015, 87, 7644.
[22] Jain, P. K.; Lee, K. S.; El-Sayed, I. H.; El-Sayed, M. A. J. Phys. Chem. B 2006, 110, 7238.
[23] de la Rica R.; Stevens, M. M. Nat. Nanotechnol. 2012, 7, 821.
[24] Novo, C.; Funston, A. M.; Mulvaney, P. Nat. Nanotechnol. 2008, 3, 598.
[25] Li, K.; Wang, K.; Qin, W.; Deng, S.; Li, D.; Shi, J.; Huang, Q.; Fan, C. J. Am. Chem. Soc. 2015, 137, 4292.
[26] Porter, M. D.; Lipert, R. J.; Siperko, L. M.; Wang, G.; Narayanan, R. Chem. Soc. Rev. 2008, 37, 1001.
[27] (a) Sun, L.; Yu, C.; Irudayaraj, J. Anal. Chem. 2007, 79, 3981;
(b) Wang, Y.; Tang, L. J.; Jiang, J. Anal. Chem. 2013, 85, 9213;
(c) Lee, J. H.; Nam, J. M.; Jeon, K. S.; Lim, D. K.; Kim, H.; Kwon, S.; Lee, H.; Suh, Y. D. ACS Nano 2016, 6, 9574;
(d) Qian, X.; Zhou, X.; Nie, S. J. Am. Chem. Soc. 2008, 130, 14934;
(e) MacAskill, A.; Crawford, D.; Graham, D.; Faulds, K. Anal. Chem. 2009, 81, 8134;
(f) Li, Z.; Zhao, A.; Gao, Q.; Guo, H.; Wang, D.; Li, L. Acta Chim. Sinica 2015, 73, 847. (李振兴, 赵爱武, 高倩, 郭红燕, 王大朋, 李磊, 化学学报, 2015, 73, 847.)
[28] Thacker, V. V.; Herrmann, L. O.; Sigle, D. O.; Zhang, T.; Liedl, T.; Baumberg, J. J.; Keyser, U. F. Nat. Commun. 2014, 5, 3448.
[29] Su, J.; Wang, D.; Nörbel, L.; Shen, J.; Zhao, Z.; Dou, Y.; Peng, T.; Shi, J.; Mathur, S.; Fan, C.; Song, S. Anal. Chem. 2017, 89, 2531.
[30] (a) Kinkhabwala, A.; Yu, Z.; Fan, S.; Avlasevich, Y.; Müllen, K.; Moerner, W. E. Nat. Photonics 2009, 3, 654;
(b) Wang, Y; Zu, X.; Yi, G.; Luo, H.; Wang, H.; Song, X. Chin. J. Chem. 2016, 34, 1321.
[31] Acuna, G. P.; Möller, F. M.; Holzmeister, P.; Beater, S.; Lalkens, B.; Tinnefeld, P. Science 2012, 338, 506.
[32] Qin, W.; Peng, T.; Gao, Y.; Wang, F.; Hu, X.; Wang, K.; Shi, J.; Li, D.; Ren, J.; Fan, C. Angew. Chem., Int. Ed. 2017, 56.
[33] Liu, M.; Li, Q.; Liang, L.; Li, J.; Wang, K.; Li, J.; Lv, M.; Chen, N.; Song, H.; Lee, J.; Shi, J.; Wang, L.; Lal, R.; Fan, C. Nat. Commun. 2017, 8, 15646.
[34] Kang, B.; Mackey, M. A.; El-Sayed, M. A. J. Am. Chem. Soc. 2010, 132, 1517.
[35] Qian, W.; Huang, X.; Kang, B.; El-Sayed, M. A. J. Biomed. Opt. 2010, 15, 046025.
[36] Hu, R.; Yong, K.-T.; Roy, I.; Ding, H.; He, S.; Prasad, P. N. J. Phys. Chem. C 2009, 113, 2676.
[37] (a) El-Sayed, I. H.; Huang, X.; El-Sayed, M. A. Nano Lett. 2005, 5, 829;
(b) Kang, B.; Mackey, M. A.; El-Sayed, M. A. J. Am. Chem. Soc. 2010, 132, 1517;
(c) Yu, C.; Nakshatri, H.; Irudayaraj, J. Nano Lett. 2007, 7, 2300;
(d) Yu, C.; Irudayaraj, J. Anal. Chem. 2007, 79, 572.
[38] Xiong, B.; Zhou, R.; Hao, J.; Jia, Y.; He, Y.; Yeung, E. S. Nat. Commun. 2013, 4, 1708.
[39] Lee, K.; Cui, Y.; Lee, L. P.; Irudayaraj, J. Nat. Nanotechnol. 2014, 9, 474.
[40] Isojima, H.; Iino, R.; Niitani, Y.; Noji, H.; Tomishige, M. Nat. Chem. Biol. 2016, 12, 290.
[41] (a) Qian, X.; Peng, X. H.; Ansari, D. O.; Yin-Goen, Q.; Chen, G. Z.; Dong, M. S.; Yang, L.; Young, A. N.; Wang, M. D.; Nie, S. Nat. Biotechnol. 2008, 26, 83;
(b) Wang, X.; Wang, C.; Cheng, L.; Lee, S. T.; Liu, Z. J. Am. Chem. Soc. 2012, 134, 7414;
(c) Ando, J.; Fujita, K.; Smith, N. I.; Kawata, S. Nano Lett. 2011, 11, 5344;
(d) Kneipp, J.; Kneipp, H.; Wittig, B.; Kneipp, K. J. Phys. Chem. C 2010, 114, 7421;
(e) Wang, Z.; Zong, S.; Yang, J.; Li, J.; Cui, Y. Biosens. Bioelectron. 2011, 26, 2883.
[42] Lin, L.; Tian, X.; Hong, S.; Dai, P.; You, Q.; Wang, R.; Feng, L.; Xie, C.; Tian, Z.; Chen, X. Angew. Chem, Int. Ed. 2013, 52, 7266.

Outlines

/