Single Nanoparticle Sensing Based on Optical Microscopy
Received date: 2017-07-27
Online published: 2017-09-18
Supported by
Project supported by the National Natural Science Foundation of China (No. 21527807).
Single nanoparticle sensing (SNS) is an emerging research field which utilizes single nanoparticles as individual nano-sensors to acquire the qualitative and quantitative information of the analytes in a localized and microscopic sample environment. Both the molecular recognition and signal transduction take place at the surface of a single nanoparticle. Versatile kinds of optical microscopy, such as dark-field microscopy and fluorescence microscopy, are often applied to locating the nano-sensor, and to accessing and analyzing the optical signal it reports. Compared to traditional sensing mechanisms that rely on ensemble nanomaterials, SNS has demonstrated its excellent sensitivity down to single molecule detection by focusing in extremely small volumes in the range of aL~pL. Simultaneous monitoring on many individual nano-sensors in a nano-array further allows for high-throughput and multiplex analysis. More importantly, single nanoparticles can be easily introduced to microscopic and dynamic systems such as living cells to probe specific analytes with high temporal and spatial resolution while maintaining the excellent sensitivity. In this review, we begin with a brief introduction on the history and development of SNS, which is followed by its major features. We subsequently survey the recent progresses in this field in the past five years, focusing on the different sensing principles, single nanoparticle counting and single nanoparticle tracking. We finally provide our perspectives that further developments on nano-probes, optical imaging techniques and data analysis are critical to the growth and applications of SNS in broad fields.
Wang Yongjie , Wang Wei . Single Nanoparticle Sensing Based on Optical Microscopy[J]. Acta Chimica Sinica, 2017 , 75(11) : 1061 -1070 . DOI: 10.6023/A17070342
[1] Albert, K. J.; Lewis, N. S.; Schauer, C. L.; Sotzing, G. A.; Stitzel, S. E.; Vaid, T. P.; Walt, D. R. Chem. Rev. 2000, 100, 2595.
[2] Fadel, T. R.; Farrell, D. F.; Friedersdorf, L. E.; Griep, M. H.; Hoover, M. D.; Meador, M. A.; Meyyappan, M. ACS Sens. 2016, 1, 207.
[3] Kemling, J. W.; Qavi, A. J.; Bailey, R. C.; Suslick, K. S. J. Phys. Chem. Lett. 2011, 2, 2934.
[4] Paolesse, R.; Nardis, S.; Monti, D.; Stefanelli, M.; Di, N. C. Chem. Rev. 2017, 117, 2517.
[5] Janata, J.; Josowicz, M.; Vanýsek, P.; DeVaney, D. M. Anal. Chem. 1998, 70, 179.
[6] Saha, K.; Agasti, S. S.; Kim, C.; Li, X.; Rotello, V. M. Chem. Rev. 2012, 112, 2739.
[7] Thévenot, D. R.; Toth, K.; Durst, R. A.; Wilson, G. S. Pure Appl. Chem. 1999, 71, 2333.
[8] Nirmal, M.; Dabbousi, B. O.; Bawendi, M. G.; Macklin, J. J.; Trautman, J. K.; Harris, T. D.; Brus, L. E. Nature 1996, 383, 802.
[9] Storhoff, J. J.; Elghanian, R.; Mucic, R. C.; And, C. A. M.; Letsinger, R. L. J. Am. Chem. Soc. 1998, 120, 1959.
[10] Weiss, S. Science 1999, 283, 1676.
[11] Homola, J.; Yee, S. S.; Gauglitz, G. Sens. Actuators, B 1999, 54, 3.
[12] ?tyroký, J.; Homola, J.; Lambeck, P. V.; Musa, S.; Hoekstra, H. J. W. M.; Harris, R. D.; Wilkinson, J. S.; Usievich, B.; Lyndin, N. M. Sens. Actuators, B 1999, 54, 66.
[13] Taton, T. A.; Mirkin, C. A.; Letsinger, R. L. Science 2000, 289, 1757.
[14] Xu, H.; Aizpurua, J.; Kall, M.; Apell, P. Phys. Rev. E 2000, 62, 4318.
[15] McFarland, A. D.; Van Duyne, R. P. Nano Lett. 2003, 3, 1057.
[16] Liu, Y.; Huang, C. Z. ACS Nano 2013, 7, 11026.
[17] Sun, S.; Gao, M.; Lei, G.; Zou, H.; Ma, J.; Huang, C. Z. Nano. Res. 2016, 9, 1125.
[18] Liu, Y.; Huang, C. Z. Chem. Commun. 2013, 49, 8262.
[19] Gao, P. F.; Gao, M. X.; Zou, H. Y.; Li, R. S.; Zhou, J.; Ma, J.; Wang, Q.; Liu, F.; Li, N.; Li, Y. F.; Huang, C. Z. Chem. Sci. 2016, 7, 5477.
[20] Zhou, J.; Lei, G.; Zheng, L. L.; Gao, P. F.; Huang, C. Z. Nanoscale 2016, 8, 11467.
[21] Wang, K.; Qiu, X.; Dong, C.; Ren, J. ChemBioChem 2007, 8, 1126.
[22] Lan, T.; Dong, C.; Huang, X.; Ren, J. Analyst 2011, 136, 4247.
[23] Zhang, B.; Lan, T.; Huang, X.; Dong, C.; Ren, J. Anal. Chem. 2013, 85, 9433.
[24] Liu, H.; Dong, C.; Ren, J. J. Am. Chem. Soc. 2014, 136, 2775.
[25] Zhang, L.; Li, Y.; Li, D. W.; Jing, C.; Chen, X.; Lv, M.; Huang, Q.; Long, Y. T.; Willner, I. Angew. Chem. Int. Ed. 2011, 50, 6789.
[26] Jin, H. Y.; Li, D. W.; Zhang, N.; Gu, Z.; Long, Y. T. ACS Appl. Mater. Interfaces 2015, 7, 12249.
[27] Yu, R. J.; Sun, J. J.; Song, H.; Tian, J. Z.; Li, D. W.; Long, Y. T. Sensors 2017, 17, 530.
[28] Xiao, L.; Qiao, Y. X.; He, Y.; Yeung, E. S. Anal. Chem. 2010, 82, 5268.
[29] Peng, Y.; Xiong, B.; Peng, L.; Li, H.; He, Y.; Yeung, E. S.; Chem, A. Anal. Chem. 2015, 87, 200.
[30] Yan, X.; Zhong, W.; Tang, A.; Schielke, E. G.; Hang, W.; Nolan, J. P. Anal. Chem. 2005, 77, 7673.
[31] Yang, L.; Zhu, S.; Hang, W.; Wu, L.; Yan, X. Anal. Chem. 2009, 81, 2555.
[32] Zhu, S.; Yang, L.; Long, Y.; Gao, M.; Huang, T.; Hang, W.; Yan, X. J. Am. Chem. Soc. 2010, 132, 12176.
[33] Ma, L.; Zhu, S.; Tian, Y.; Zhang, W.; Wang, S.; Chen, C.; Wu, L.; Yan, X. Angew. Chem. 2016, 128, 10239.
[34] Zhu, S.; Ma, L.; Wang, S.; Chen, C.; Zhang, W.; Yang, L.; Hang, W.; Nolan, J. P.; Wu, L.; Yan, X. ACS Nano 2014, 8, 10998.
[35] Liu, S. L.; Zhang, Z. L.; Sun, E. Z.; Peng, J.; Xie, M.; Tian, Z. Q.; Lin, Y.; Pang, D. W. Biomaterials 2011, 32, 7616.
[36] Zhou, P.; Zheng, Z.; Lu, W.; Zhang, F.; Zhang, Z.; Pang, D.; Hu, B.; He, Z.; Wang, H. Angew. Chem. Int. Ed. 2012, 51, 670.
[37] Liu, S. L.; Zhang, Z. L.; Tian, Z. Q.; Zhao, H. S.; Liu, H.; Sun, E. Z.; Xiao, G. F.; Zhang, W.; Wang, H. Z.; Pang, D. W. ACS Nano 2012, 6, 141.
[38] Liu, S. L.; Li, J.; Zhang, Z. L.; Wang, Z. G.; Tian, Z. Q.; Wang, G. P.; Pang, D. W. Sci. Rep. 2013, 3, 2462.
[39] Wen, L.; Lin, Y.; Zheng, Z. H.; Zhang, Z. L.; Zhang, L. J.; Wang, L. Y.; Wang, H. Z.; Pang, D. W. Biomaterials 2014, 35, 2295.
[40] Zhang, C. Y.; Johnson, L. W. Angew. Chem. Int. Ed. 2007, 46, 3482.
[41] Zhang, C.; Johnson, L. W. Anal. Chem. 2009, 81, 3051.
[42] Zhang, C.; Hu, J. Anal. Chem. 2010, 82, 1921.
[43] Zhou, J.; Wang, Q.; Zhang, C. Y. J. Am. Chem. Soc. 2013, 135, 2056.
[44] Xu, Q.; Zhang, Y.; Zhang, C. Y. Chem. Commun. 2015, 51, 9121.
[45] Haes, A. J.; Van Duyne, R. P. J. Am. Chem. Soc. 2002, 124, 10596.
[46] Vosgröne, T.; Meixner, A. J. ChemPhysChem 2005, 6, 154.
[47] Kneipp, J.; Kneipp, H.; Kneipp, K. Chem. Soc. Rev. 2008, 37, 1052.
[48] Mayer, K. M.; Hafner, J. H. Chem. Rev. 2011, 111, 3828.
[49] Chen, K. I.; Li, B. R.; Chen, Y. T. Nano Today 2011, 6, 131.
[50] Scida, K.; Stege, P. W.; Haby, G.; Messina, G. A.; García, C. D. Anal. Chim. Acta 2011, 691, 6.
[51] Sapsford, K. E.; Tyner, K. M.; Dair, B. J.; Deschamps, J. R.; Medintz, I. L. Anal. Chem. 2011, 83, 4453.
[52] Chiang, C. K.; Chen, W. T.; Chang, H. T. Chem. Soc. Rev. 2011, 40, 1269.
[53] Chen, G.; Song, F.; Xiong, X.; Peng, X. Ind. Eng. Chem. Res. 2013, 52, 11228.
[54] Oja, S. M.; Wood, M.; Zhang, B. Anal. Chem. 2013, 85, 473.
[55] Lei, G.; He, Y. Acta Phys.-Chim. Sin. 2017, doi:10. 3866/PKU. WHXB201706301(in Chinese). (雷刚, 何彦, 物理化学学报, 2017, doi:10. 3866/PKU. WHXB201706301)
[56] Nie, S.; Emory, S. R. Science 1997, 275, 1102.
[57] Cui, J.; Beyler, A. P.; Marshall, L. F.; Chen, O.; Harris, D. K.; Wanger, D. D.; Brokmann, X.; Bawendi, M. G. Nat. Chem. 2013, 5, 602.
[58] Hwang, W. S.; Truong, P. L.; Sang, J. S. Anal. Biochem. 2012, 421, 213.
[59] Blaber, M. G.; Henry, A.-I.; Bingham, J. M.; Schatz, G. C.; Van Duyne, R. P. J. Phys. Chem. C 2012, 116, 393.
[60] Fang, Y.; Wang, W.; Wo, X.; Luo, Y.; Yin, S.; Wang, Y.; Shan, X.; Tao, N. J. Am. Chem. Soc. 2014, 136, 12584.
[61] Xiao, L.; Wei, L.; Liu, C.; He, Y.; Yeung, E. S. Angew. Chem. Int. Ed. 2012, 51, 4181.
[62] Ament, I.; Prasad, J.; Henkel, A.; Schmachtel, S.; Sönnichsen, C. Nano Lett. 2012, 12, 1092.
[63] Sebba, D. S.; Watson, D. A.; Nolan, J. P. ACS Nano 2009, 3, 1477.
[64] Kruss, S.; Salem, D. P.; Vukovi?, L.; Lima, B.; Vander, E. E.; Boyden, E. S.; Strano, M. S. Proc. Natl. Acad. Sci. U. S. A. 2017, 114, 1789.
[65] Liu, M.; Chao, J.; Deng, S.; Wang, K.; Li, K.; Fan, C. Colloids Surf., B 2014, 124, 111.
[66] Xiong, B.; Zhou, R.; Hao, J.; Jia, Y.; He, Y.; Yeung, E. S. Nat. Commun. 2013, 4, 1708.
[67] Gu, Z.; Jing, C.; Ying, Y. L.; He, P.; Long, Y. T. Theranostics 2015, 5, 188.
[68] Weigel, A.; Sebesta, A.; Kukura, P. ACS Photonics 2014, 1, 848.
[69] Wolfbeis, O. S. Chem. Soc. Rev. 2015, 44, 4743.
[70] Liu, X.; Zhang, N.; Bing, T.; Shangguan, D. Anal. Chem. 2014, 86, 2289.
[71] Yang, L.; Li, N.; Pan, W.; Yu, Z.; Tang, B.; Chem, A. Anal. Chem. 2015, 87, 3678.
[72] Syal, K.; Wang, W.; Shan, X.; Wang, S.; Chen, H.; Tao, N. Biosens. Bioelectron. 2015, 63, 131.
[73] Yuan, L.; Wang, X.; Fang, Y.; Liu, C.; Jiang, D.; Wo, X.; Wang, W.; Chen, H. Y. Anal. Chem. 2016, 88, 2321.
[74] Andrecka, J.; Spillane, K. M.; Ortega-Arroyo, J.; Kukura, P. ACS Nano 2013, 7, 10662.
[75] Piliarik, M.; Sandoghdar, V. Nat. Commun. 2014, 5, 4495.
[76] Spindler, S.; Ehrig, J.; König, K.; Nowak, T.; Piliarik, M.; Stein, H. E.; Taylor, R. W.; Garanger, E.; Lecommandoux, S.; Alves, I. D. J. Phys. D:Appl. Phys. 2016, 49, 274002.
[77] Mansuripur, M.; Peyghambarian, N.; Lau, P. C.; Norwood, R. A. Biomed. Opt. Express 2014, 5, 2420.
[78] Kruss, S.; Landry, M. P.; Ende, E. V.; Lima, B. M. A.; Reuel, N. F.; Zhang, J.; Nelson, J.; Mu, B.; Hilmer, A.; Strano, M. J. Am. Chem. Soc. 2014, 136, 713.
[79] Guo, L.; Ferhan, A. R.; Lee, K.; Kim, D. H. Anal. Chem. 2011, 83, 2605.
[80] Wang, Y.; Kar, A.; Paterson, A.; Kourentzi, K.; Le, H.; Ruchhoeft, P.; Willson, R.; Bao, J. ACS Photonics 2014, 1, 241.
[81] Germain, M. E.; Knapp, M. J. J. Am. Chem. Soc. 2008, 130, 5422.
[82] Paolesse, R.; Monti, D.; Dini, F.; Di, N. C. Top. Curr. Chem. 2011, 300, 139.
[83] Diehl, K. L.; Anslyn, E. V. Chem. Soc. Rev. 2013, 42, 8596.
[84] Haes, A. J.; Van Duyne, R. P. Anal. Bioanal. Chem. 2004, 379, 920.
[85] Whitney, A. V.; Elam, J. W.; Zou, S.; Zinovev, A. V.; Stair, P. C.; Schatz, G. C.; Van Duyne, R. P. J. Phys. Chem. B 2005, 109, 20522.
[86] Anker, J. N.; Hall, W. P.; Lyandres, O.; Shah, N. C.; Zhao, J.; Duyne, R. P. V. Nat. Mater. 2008, 7, 442.
[87] Elghanian, R.; Storhoff, J. J.; Mucic, R. C.; Letsinger, R. L.; Mirkin, C. A. Science 1997, 277, 1078.
[88] Liu, J.; Lu, Y. Angew. Chem. Int. Ed. 2005, 45, 90.
[89] Lee, J. S.; Han, M. S.; Mirkin, C. A. Angew. Chem. Int. Ed 2007, 119, 4171.
[90] Liu, X.; Wu, Z.; Zhang, Q.; Zhao, W.; Zong, C.; Gai, H. Anal. Chem. 2016, 88, 2119.
[91] Ma, J.; Zhan, L.; Li, R. S.; Gao, P. F.; Huang, C. Z. Anal. Chem. 2017, 89, 8484.
[92] Mitra, A.; Ignatovich, F.; Novotny, L. Biosens. Bioelectron. 2012, 31, 499.
[93] Zhang, C. Y.; Yeh, H. C.; Kuroki, M. T.; Wang, T. H. Nat. Mater. 2005, 4, 826.
[94] Wang, L. J.; Yang, Y.; Zhang, C. Y. Anal. Chem. 2015, 87, 4696.
[95] Halpern, A. R.; Wood, J. B.; Wang, Y.; Corn, R. M. ACS Nano 2014, 8, 1022.
[96] Xiang, W.; Li, Z.; Jiang, Y.; Li, M.; Su, Y.; Wang, W.; Tao, N. Anal. Chem. 2016, 88, 2380.
[97] Vasco, F.; Andrea, H.; Wim, J. Pharm. Res. 2010, 27, 796.
[98] Dragovic, R. A.; Gardiner, C.; Brooks, A. S.; Tannetta, D. S.; Ferguson, D. J.; Hole, P.; Carr, B.; Redman, C. W.; Harris, A. L.; Dobson, P. J. Nanomedicine 2011, 7, 780.
[99] Gross, J.; Sayle, S.; Karow, A. R.; Bakowsky, U.; Garidel, P. Eur. J. Pharm. Biopharm. 2016, 104, 30.
[100] Ramunas, J.; Montgomery, H. J.; Kelly, L.; Sukonnik, T.; Ellis, J.; Jervis, E. J. Mol. Ther. 2007, 15, 810.
[101] Bruckbauer, A.; James, P.; Zhou, D.; Yoon, J. W.; Excell, D.; Korchev, Y.; Jones, R.; Klenerman, D. Biophys. J. 2007, 93, 3120.
[102] Lew, M. D.; Thompson, M. A.; Badieirostami, M.; Moerner, W. E. Proc. SPIE. Int. Soc. Opt. Eng. 2010, 7571, 75710Z.
[103] Wang, W.; Liu, J.; Li, C.; Zhang, J.; Liu, J.; Dong, A.; Kong, D. J. Mater. Chem. B 2014, 2, 4185.
[104] Yu, J. C.; Chen, Y. L.; Zhang, Y. Q.; Yao, X. K.; Qian, C. G.; Huang, J.; Zhu, S.; Jiang, X. Q.; Shen, Q. D.; Gu, Z. Chem. Commun. 2014, 50, 4699.
[105] Dubertret, B.; Skourides, P.; Norris, D. J.; Noireaux, V.; Brivanlou, A. H.; Libchaber, A. Science 2002, 298, 1759.
[106] Clapp, A. R.; Medintz, I. L.; Mauro, J. M.; Fisher, B. R.; Bawendi, M. G.; Mattoussi, H. J. Am. Chem. Soc. 2004, 126, 301.
[107] Medintz, I. L.; Uyeda, H. T.; Goldman, E. R.; Mattoussi, H. Nat. Mater. 2005, 4, 435.
[108] Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.; Sundaresan, G.; Wu, A. M.; Gambhir, S. S.; Weiss, S. Science 2005, 307, 538.
[109] Resch-Genger, U.; Grabolle, M.; Cavaliere-Jaricot, S.; Nitschke, R.; Nann, T. Nat. Methods 2008, 5, 763.
[110] Dahan, M.; Lévi, S.; Luccardini, C.; Rostaing, P.; Riveau, B.; Triller, A. Science 2003, 302, 442.
[111] Chang, J.; Rosenthal, S. J. ACS Chem. Neurosci. 2012, 3, 737.
[112] Maier, S. A.; Kik, P. G.; Atwater, H. A.; Meltzer, S.; Harel, E.; Koel, B. E.; Requicha, A. A. G. Nat. Mater. 2003, 2, 229.
[113] Eustis, S.; Elsayed, M. A. Chem. Soc. Rev. 2006, 35, 209.
[114] Tam, F.; Goodrich, G. P.; Johnson, B. R.; Halas, N. J. Nano Lett. 2007, 7, 496.
[115] Xiao, L.; Yeung, E. S. Annu. Rev. Anal. Chem. 2014, 7, 89.
[116] Yan, G.; Sun, W.; Wang, G.; Jeftinija, K.; Jeftinija, S.; Fang, N. Nat. Commun. 2012, 3, 1030.
[117] Stender, A. S.; Marchuk, K.; Liu, C.; Sander, S.; Meyer, M. W.; Smith, E. A.; Neupane, B.; Wang, G.; Li, J.; Cheng, J. X. Chem. Rev. 2013, 113, 2469.
[118] Ji, W. H.; Ruberu, T. P. A.; Han, R.; Dong, B.; Vela, J.; Fang, N. J. Am. Chem. Soc. 2014, 136, 1398.
[119] Chang, W. S.; Ha, J. W.; Slaughter, L. S.; Link, S. Proc. Nat. Acad. Sci. U. S. A. 2010, 107, 2781.
[120] Yuan, T. L.; Jiang, Y. Y.; Wang, W. Prog. Chem. 2016, 28, 607. (in Chinese). (袁婷联, 蒋莹琰, 王伟, 化学进展, 2016, 28, 607.)
[121] Zhu, J.; Yong, K. T.; Roy, I.; Hu, R.; Ding, H.; Zhao, L.; Swihart, M. T.; He, G. S.; Cui, Y.; Prasad, P. N. Nanotechnology 2010, 21, 285106.
[122] Zhao, T.; Yu, K.; Li, L.; Zhang, T.; Guan, Z.; Gao, N.; Yuan, P.; Li, S.; Yao, S. Q.; Xu, Q. H. ACS Appl. Mater. Interfaces 2014, 6, 2700.
[123] Xiao, L.; Qiao, Y.; He, Y.; Yeung, E. S. J. Am. Chem. Soc. 2011, 133, 10638.
[124] Dewitt, M. A.; Yildiz, A. Science 2012, 335, 221.
[125] Li, Q.; Li, W.; Yin, W.; Guo, J.; Zhang, Z. P.; Zeng, D.; Zhang, X.; Wu, Y.; Zhang, X. E.; Cui, Z. ACS Nano 2017, 11, 3890.
[126] Li, N.; Chang, C.; Pan, W.; Tang, B. Angew. Chem. Int. Ed. 2012, 51, 7426.
[127] Xu, K.; Qiang, M.; Gao, W.; Su, R.; Li, N.; Gao, Y.; Xie, Y.; Kong, F.; Tang, B. Chem. Sci. 2013, 4, 1079.
[128] Xie, T.; Jing, C.; Long, Y. T. Analyst 2017, 142, 409.
[129] Ma, W.; Ma, H.; Chen, J. F.; Peng, Y. Y.; Yang, Z. Y.; Wang, H. F.; Ying, Y. L.; Tian, H.; Long, Y. T. Chem. Sci. 2017, 8, 1854.
[130] Li, M.; Shi, L.; Xie, T.; Jing, C.; Xiu, G.; Long, Y. T. ACS Sens. 2017, 2, 263.
[131] Liu, Q.; Ma, C.; Liu, X. P.; Wei, Y. P.; Mao, C. J.; Zhu, J. J. Biosens. Bioelectron. 2017, 92, 273.
[132] Chen, Z.; Li, J.; Chen, X.; Cao, J.; Zhang, J.; Min, Q.; Zhu, J. J. J. Am. Chem. Soc. 2015, 137, 1903.
[133] Zhao, M.; Fan, G. C.; Chen, J. J.; Shi, J. J.; Zhu, J. J. Anal. Chem. 2015, 87, 12340.
[134] Fan, G. C.; Zhao, M.; Zhu, H.; Shi, J. J.; Zhang, J. R.; Zhu, J. J. J. Phys. Chem. C 2015, 120, 15657.
/
| 〈 |
|
〉 |