Fluorescent Nanoprobe for Detection and Imaging of Nucleic Acid Molecules
Received date: 2017-08-03
Online published: 2017-09-18
Supported by
Project supported by the 973 Program (No. 2013CB933800), the National Natural Science Foundation of China (Nos. 21390411, 21535004, 21422505, 21375081, 21505087), and the Natural Science Foundation for Distinguished Young Scholars of Shandong Province (No. JQ201503).
Nucleic acids, including deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), play important roles in normal or abnormal life activities. DNA is an important genetic material and carrier of genetic information. It plays an important role in cell division, biological development, mutation, cancer, etc. RNA includes mRNA, tRNA, microRNA (miRNA) and small RNA. Tumor-associated mRNA has been widely used as a specific marker to assess the migration of tumor cells, and its expression level is related to the tumor burden and malignant progression. MiRNA is a non-coding small molecule RNA that regulates at least 30% of the genes. MiRNA is involved in most of the biological process, such as proliferation, differentiation, senescence, migration and apoptosis. The abnormal expression of DNA, mRNA and miRNA is closely associated with the occurrence and development of multiple diseases. Therefore, developing accurate and effective methods for detecting nucleic acid molecules is of great significance for studying the function of nucleic acid regulation and achieving the early detection and treatment of diseases. Fluorescence detection method and imaging technology provide powerful tools for real-time and accurately detecting nucleic acid molecules due to their high sensitivity and temporal resolution. Fluorescent nanoprobe has many advantages such as good biocompatibility, good solubility and so on. It has been widely used in the detection of nucleic acid molecules for further understanding the roles of nucleic acid in many diseases. In this review, we have showed the roles of various nucleic acid molecules in life activities and illustrated the advances in the development of fluorescent nanoprobe for detection of disease-related DNA, mRNA and miRNA in live cells and in vivo in recent years. The preparation of these nanoprobe, detection mechanism and imaging application were also presented. Finally, the challenge and future development of constructing new fluorescent nanoprobe for nucleic acids detection were proposed.
Key words: fluorescent nanoprobe; nucleic acids; detection; live cells; in vivo; fluorescent imaging
Yang Limin , Liu Bo , Li Na , Tang Bo . Fluorescent Nanoprobe for Detection and Imaging of Nucleic Acid Molecules[J]. Acta Chimica Sinica, 2017 , 75(11) : 1047 -1060 . DOI: 10.6023/A17080353
[1] Jackson, S. P.; Bartek, J. Nature 2009, 461, 1071.
[2] Anker, P.; Mulcahy, H.; Chen, X. Q.; Stroun, M. Cancer Metastasis Rev. 1999, 18, 65.
[3] Hanahan, D.; Weinberg, R. A. Cell 2000, 100, 57.
[4] Zimmerman, A. L.; Wu, S. Cancer Lett. 2011, 300, 10.
[5] Rooij, E. v.; Olson, E. N. Nat. Rev. Drug Discov. 2012, 11, 860.
[6] Pavlov, V.; Shlyahovsky, B.; Willner, I. J. Am. Chem. Soc. 2005, 127, 6522.
[7] Hou, T.; Li, W.; Liu, X.; Li, F. Anal. Chem. 2015, 87, 11368.
[8] Liu, H.; Li, L.; Duan, L.; Wang, X.; Xie, Y.; Tong, L.; Wang, Q.; Tang, B. Anal. Chem. 2013, 85, 7941.
[9] Ge, L.; Wang, W.; Hou, T.; Li, F. Biosens. Bioelectron. 2016, 77, 220.
[10] Tian, H.; Sun, Y.; Liu, C.; Duan, X.; Tang, W.; Li, Z. Anal. Chem. 2016, 88, 11384.
[11] Lytton-Jean, A. K. R.; Han, M. S.; Mirkin, C. A. Anal. Chem. 2007, 79, 6037.
[12] Song, J.; Yang, Q.; Lv, F.; Liu, L.; Wang, S. ACS Appl. Mater. Interfaces 2012, 4, 2885.
[13] Yu, Z.; Sun, Q.; Pan, W.; Li, N.; Tang, B. ACS Nano 2015, 9, 11064.
[14] Yang, L.; Li, N.; Pan, W.; Yu, Z.; Tang, B. Anal. Chem. 2015, 87, 3678.
[15] Yang, R.; Jin, J.; Chen, Y.; Shao, N.; Kang, H.; Xiao, Z.; Tang, Z.; Wu, Y.; Zhu, Z.; Tan, W. J. Am. Chem. Soc. 2008, 130, 8351.
[16] Li, X.; Wang, Y.; Zhang, X.; Zhao, Y.; Liu, C.; Li, Z. Acta Chim. Sinica 2014, 72, 395(in Chinese). (李晓利, 王愈聪, 张学晶, 赵云颉, 刘成辉, 李正平, 化学学报, 2014, 72, 395.)
[17] Bao, H.; Jia, C.; Zhou, Z.; Jin, Q.; Zhao, J. Acta Chim. Sinica 2009, 67, 2144(in Chinese). (包华, 贾春平, 周忠良, 金庆辉, 赵建龙, 化学学报, 2009, 67, 2144.)
[18] Zeng, G.; Xiang, D.; He, Z. Acta Chim. Sinica 2011, 69, 1450. (in Chinese). (曾国平, 向东山, 何治柯, 化学学报, 2011, 69, 1450.)
[19] Deng, H.; Wang, G.; Zhu, B.; Zhu, L.; Wang, D.; Zhuang, Y.; Zhu, X. Acta Chim. Sinica 2012, 70, 2507(in Chinese). (邓洪平, 王国建, 朱邦尚, 朱利娟, 王大力, 庄园园, 朱新远, 化学学报, 2012, 70, 2507.)
[20] Ge, L.; Sun, X.; Hong, Q.; Li, F. ACS Appl. Mater. Interfaces 2017, 9, 13102.
[21] Liu, X.; Aizen, R.; Freeman, R.; Yehezkeli, O.; Willner, I. ACS Nano 2012, 6, 3553.
[22] Song, S.; Liang, Z.; Zhang, J.; Wang, L.; Li, G.; Fan, C. Angew. Chem. Int. Ed. 2009, 48, 8670.
[23] He, S.; Song, B.; Li, D.; Zhu. C.; Qi, W.; Wen, Y.; Wang, L.; Song, S.; Fang, H.; Fan, C. Adv. Funct. Mater. 2010, 20, 453.
[24] Liu, X.; Wang, F.; Aizen, R.; Yehezkeli, O.; Willner, I. J. Am. Chem. Soc. 2013, 135, 11832.
[25] Parvin, N.; Jin, Q.; Wei, Y.; Yu, R.; Zheng, B.; Huang, L.; Zhang, Y.; Wang, L.; Zhang, H.; Gao, M.; Zhao, H.; Hu, W.; Li, Y.; Wang, D. Adv. Mater. 2017, 29, 1606755.
[26] Zhu, X.; Zhou, X.; Xing, D. Chem. Eur. J. 2013, 19, 5487.
[27] Lu, Z.; Zhang, L.; Deng, Y.; Li, S.; He, N. Nanoscale 2012, 4, 5840.
[28] Tu, Y.; Wu, P.; Zhang, H.; Cai, C. Chem. Commun. 2012, 48, 10718.
[29] Tu, Y.; Li, W.; Wu, P.; Zhang, H.; Cai, C. Anal. Chem. 2013, 85, 2536.
[30] Yang, L.; Liu, C.; Ren, W.; Li, Z. ACS Appl. Mater. Interfaces 2012, 4, 6450.
[31] Wang, X.-P.; Yin, B.; Ye, B.-C. RSC Adv. 2013, 3, 8633.
[32] Degliangeli, F.; Kshirsagar, P.; Brunetti, V.; Pompa, P. P.; Fiammengo, R. J. Am. Chem. Soc. 2014, 136, 2264.
[33] Liu, H.; Li, L.; Wang, Q.; Duan, L.; Tang, B. Anal. Chem. 2014, 86, 5487.
[34] Wang, W.; Kong, T.; Zhang, D.; Zhang, J.; Cheng, G. Anal. Chem. 2015, 87, 10822.
[35] Li, W.; Hou, T.; Wu, M.; Li, F. Talanta 2016, 148, 116.
[36] Zhang, H.; Wang, Y.; Zhao, D.; Zeng, D.; Xia, J.; Aldalbahi, A.; Wang, C.; San, L.; Fan C.; Zuo, X.; Mi, X. ACS Appl. Mater. Interfaces 2015, 7, 16152.
[37] Cui, L.; Lin, X.; Lin, N.; Song, Y.; Zhu, Z.; Chen, X.; Yang, C. J. Chem. Commun. 2012, 48, 194.
[38] Dong, H.; Zhang, J.; Ju, H.; Lu, H.; Wang, S.; Jin, S.; Hao, K.; Du, H.; Zhang, X. Anal. Chem. 2012, 84, 4587.
[39] Dong, H.; Lei, J.; Ju, H.; Zhi, F.; Wang, H.; Guo, W.; Zhu, Z.; Yan, F. Angew. Chem., Int. Ed. 2012, 51, 4607.
[40] Wu, Y.; Han, J.; Xue, P.; Xu, R.; Kang, Y. Nanoscale 2015, 7, 1753.
[41] Zhang, P.; He, Z.; Wang, C.; Chen, J.; Zhao, J.; Zhu, X.; Li, C.-Z.; Min, Q.; Zhu, J.-J. ACS Nano 2015, 9, 789.
[42] Li, S.; Xu, L.; Ma, W.; Wu, X.; Sun, M.; Kuang, H.; Wang, L.; Kotov, N. A.; Xu, C. J. Am. Chem. Soc. 2016, 138, 306.
[43] Min, X.; Zhang, M.; Huang, F.; Lou, X.; Xia, F. ACS Appl. Mater. Interfaces 2016, 8, 8998.
[44] Li, J.; Li, D.; Yuan, R.; Xiang, Y. ACS Appl. Mater. Interfaces 2017, 9, 5717.
[45] Zhang, Z.; Wang, Y.; Zhang, N.; Zhang, S. Chem. Sci. 2016, 7, 4184.
[46] Li, L.; Feng, J.; Liu, H.; Li, Q.; Tong, L.; Tang, B. Chem. Sci. 2016, 7, 1940.
[47] Choi, C. K. K.; Li, J.; Wei, K.; Xu, Y. J.; Ho, L. W. C.; Zhu, M.; To, K. K. W.; Choi, C. H. J.; Bian, L. J. Am. Chem. Soc. 2015, 137, 7337.
[48] Li, S.; Xu, L.; Sun, M.; Wu, X.; Liu, L.; Kuang, H.; Xu, C. Adv. Mater. 2017, 29, 1606086.
[49] Lu, Q.; Ericson, D.; Song, Y.; Zhu, C.; Ye, R.; Liu, S.; Spernyak, J. A.; Du, D.; Li, H.; Wu, Y.; Lin, Y. ACS Appl. Mater. Interfaces 2017, 9, 23325.
[50] Ryoo, S.-R.; Lee, J.; Yeo, J.; Na, H. K.; Kim, Y.-K.; Jang, H.; Lee, J. H.; Han, S. W.; Lee, Y.; Kim, V. N.; Min, D.-H. ACS Nano 2013, 7, 5882.
[51] Prigodich, A. E.; Seferos, D. S.; Massich, M. D.; Giljohann, D. A.; Lane, B. C.; Mirkin, C. A. ACS Nano 2009, 3, 2147.
[52] Jayagopal, A.; Halfpenny, K. C.; Perez, J. W.; Wright, D. W. J. Am. Chem. Soc. 2010, 132, 9789.
[53] Yang, Y.; Huang, J.; Yang, X.; Quan, K.; Wang, H.; Ying, L.; Xie, N.; Ou, M.; Wang, K. J. Am. Chem. Soc. 2015, 137, 8340.
[54] Chen, T.; Wu, C. S.; Jimenez, E.; Zhu, Z.; Dajac, J. G.; You, M.; Han, D.; Zhang, X.; Tan, W. Angew. Chem. Int. Ed. 2013, 52, 2012.
[55] Pan, W.; Yang, H.; Zhang, T.; Li, Y.; Li, N.; Tang, B. Anal. Chem. 2013, 85, 6930.
[56] Li, N.; Yang, H.; Pan, W.; Diao, W.; Tang, B. Chem. Commun. 2014, 50, 7473.
[57] Xie, N.; Huang, J.; Yang, X.; Yang, Y.; Quan, K.; Wang, H.; Ying, L.; Ou, M.; Wang, K. Chem. Commun. 2016, 52, 2346.
[58] Ou, M.; Huang, J.; Yang, X.; Quan, K.; Yang, Y.; Xie, N.; Wang, K. Chem. Sci. 2017, 8, 668.
[59] Wu, Z.; Liu, G.-Q.; Yang, X.-L.; Jiang, J.-H. J. Am. Chem. Soc. 2015, 137, 6829.
[60] Shi, J.; Zhou, M.; Gong, A.; Li, Q.; Wu, Q.; Cheng, G. J.; Yang, M.; Sun, Y. Anal. Chem. 2016, 88, 1979.
[61] Xie, N.; Huang, J.; Yang, X.; Yang, Y.; Quan, K.; Ou, M.; Fang, H.; Wang, K. ACS Sens. 2016, 1, 1445.
[62] He, L.; Lu, D.-Q.; Liang, H.; Xie, S.; Luo, C.; Hu, M.; Xu, L.; Zhang, X.; Tan, W. ACS Nano 2017, 11, 4060.
[63] He, D.; He, X.; Yang, X.; Li, H.-W. Chem. Sci. 2017, 8, 2832.
[64] Zhang, R.; Gao, S.; Wang, Z.; Han, D.; Liu, L.; Ma, Q.; Tan, W.; Tian, J.; Chen, X. Adv. Funct. Mater. 2017, 27, 1701027.
[65] Qiao, G.; Gao, Y.; Li, N.; Yu, Z.; Zhuo, L.; Tang, B. Chem. Eur. J. 2011, 17, 11210.
[66] Prigodich, A. E.; Randeria, P. S.; Briley, W. E.; Kim, N. J.; Daniel, W. L.; Giljohann, D. A.; Mirkin, C. A. Anal. Chem. 2012, 84, 2062.
[67] Wang, Z.; Zhang, R.; Wang, Z.; Wang, H.-F.; Wang, Y.; Zhao, J.; Wang, F.; Li, W.; Niu, G.; Kiesewetter, D. O.; Chen, X. ACS Nano 2014, 8, 12386.
[68] Pan, W.; Yang, H.; Li, N.; Yang, L.; Tang, B. Chem. Eur. J. 2015, 21, 6070.
[69] Pan, W.; Li, Y.; Wang, M.; Yang, H.; Li, N.; Tang, B. Chem. Commun. 2016, 52, 4569.
[70] Tang, P.; Zheng, J.; Tang, J.; Ma, D.; Xu, W.; Li, J.; Cao, Z.; Yang, R. Chem. Commun. 2017, 53, 2507.
[71] Li, N.; Chang, C.; Pan, W.; Tang, B. Angew. Chem. Int. Ed. 2012, 51, 7426.
[72] Wang, S.; Xia, M.; Liu, J.; Zhang, S.; Zhang, X. ACS Sens. 2017, 2, 735.
[73] Pan, W.; Zhang, T.; Yang, H.; Diao, W.; Li, N.; Tang, B. Anal. Chem. 2013, 85, 10581.
[74] Luan, M.; Li, N.; Pan, W.; Yang, L.; Yu, Z.; Tang, B. Chem. Commun. 2017, 53, 356.
[75] Yang, L.; Ren, Y.; Pan, W.; Yu, Z.; Tong, L.; Li, N.; Tang, B. Anal. Chem. 2016, 88, 11886.
[76] Yang, L.; Chen, Y.; Pan, W.; Wang, H.; Li, N.; Tang, B. Anal. Chem. 2017, 89, 6196.
/
〈 |
|
〉 |