Mechanochemically Sulfidated Zero Valent Iron as an Efficient Fenton-like Catalyst for Degradation of Organic Contaminants
Received date: 2017-05-01
Online published: 2017-09-21
Supported by
Project supported by the Natural Science Foundation of Zhejiang Province (No. LR16E08003).
Mechanochemically sulfidated zero valent iron (S-ZVI), prepared from ball milling of ZVI and sulfur powder, was used as a catalyst for heterogeneous Fenton oxidation of a variety of persistent organic compounds including phenol, chlorophenols, nitrobenzene, bisphenol A and tetracycline. The 100% removal of phenol was achieved within 1 min in S-ZVI/H2O2 system while it took 10 min in ZVI/H2O2 system. The initial surface area normalized phenol degradation rate by S-ZVI was 5 times of that of ZVI, suggesting the much higher efficiency of S-ZVI in catalyzing the decomposition of H2O2 for oxidative degradation of organic contaminants. In addition, an initial lag period of phenol degradation in ZVI/H2O2 system was absent in S-ZVI/H2O2 system. The removal efficiency of phenol was dependent on the initial H2O2 concentration, S-ZVI dosage, initial phenol concentration, and pH. The optimum pH and H2O2 concentration was 3.0 and 2 mmol·L-1, respectively, when the initial phenol concentration was 0.2 mmol·L-1 and the S-ZVI dosage was 0.12 g·L-1. The phenol degradation was effectively scavenged by a ·OH probe compound, ethanol and the electron paramagnetic resonance (EPR) studies successfully detected DMPO (5,5-dimethyl-1-pyrroline-N-oxide)-OH signals, which collectively suggests that the reactive species responsible for contaminant degradation in S-ZVI/H2O2 system was ·OH. S-ZVI particles before and after reaction were characterized by scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM-EDS) and X-ray diffraction (XRD). SEM-EDS results showed that the oxidation of S-ZVI by H2O2 resulted in the formation of iron hydroxide nanoparticles on the particle surface while FeS was not significantly consumed. Tafel analysis of S-ZVI and ZVI modified electrodes demonstrated that S-ZVI had a greater overall rate of electron transfer than ZVI. Therefore, FeS as a better electron conductor facilitated the electron transfer from Fe0 to H2O2 resulting in faster Fe2+ releasing and H2O2 activation, which enhanced contaminant deg-radation.
Huang Danwei , He Jia , Gu Yawei , He Feng . Mechanochemically Sulfidated Zero Valent Iron as an Efficient Fenton-like Catalyst for Degradation of Organic Contaminants[J]. Acta Chimica Sinica, 2017 , 75(9) : 866 -872 . DOI: 10.6023/A17020060
[1] (a) Pignatello, J. J.; Oliveros, E.; MacKay, A. Crit. Rev. Env. Sci. Technol. 2006, 36, 1.
(b) Neyens, E.; Baeyens, J. J. Hazard. Mater. 2003, 98, 33.
(c) Andreozzi, R.; Caprio, V.; Insola, A. Catal. Today 1999, 53, 51.
(d) Gogate, P. R.; Pandit, A. B. Adv. Environ. Res. 2004, 8, 501.
(e) Esplugas, S.; Giménez, J.; Contreras, S. Water Res. 2002, 36, 1034.
(f) He, F.; Shen, X.-Y.; Lei, L.-C. J. Environ. Sci. CHINA 2003, 15, 351.
[2] (a) Wang, Y.-B.; Zhao, H.-Y.; Zhao, G.-H. Prog. Chem. 2013, 25, 1246. (王彦斌, 赵红颖, 赵国华, 化学进展, 2013, 25, 1246.)
(b) Xu, L.-J; Wang, J.-L. Environ. Sci. Technol. 2012, 46, 10145.
(c) Luo, W.; Zhu, L.-H.; Wang, N. Environ. Sci. Technol. 2010, 44, 1786.
[3] (a) Bremner, D. H.; Burgess, A. E.; Houllemaro, D. Appl. Catal., B 2006, 63, 15.
(b) Costa, R. C. C.; Moura, F. C. C.; Ardisson, J. D.; Fabris, J. D.; Lago, R. M. Appl. Catal., B 2008, 83, 131.
(c) Fu, F. L.; Dionysiou, D. D.; Liu, H. J. Hazard. Mater. 2014, 267, 194.
(d) Zhou, T; Li, Y.-Z.; Ji, J.; Lu, X.-H. Sep. Purif. Technol. 2008, 62, 551.
(e) Kallel, M.; Belaid, C.; Mechichi, T. Chem. Eng. J. 2009, 150, 391.
[4] (a) Xu, L.-J.; Wang, J.-L. J. Hazard. Mater. 2011, 186, 256.
(b) Zha, S.-X.; Cheng, Y.; Gao, Y.; Chen, Z.-L.; Mallavarapu, M.; Ravendra, N. Chem. Eng. J. 2014, 255, 141.
(c) Cheng, R.; Cheng, C.; Liu, G.-H.; Zheng, X.; Li, G.-Q.; Li, J. Chemosphere 2015, 141, 138.
(d) Devi, L. G.; Kumar, S. G.; Reddy, K. M. J. Hazard. Mater. 2009, 164, 459.
(e) Ai, Z.-H.; Lu, L.-R.; Li, J.-P.; Zhang, L.-Z.; Qiu, J.-R.; Wu, M.-H. J. Phys. Chem. C 2007, 111, 4087.
[5] (a) Kim, E. J.; Kim, J. H.; Azad, A. M.; Chang, Y. S. ACS Appl. Mater. Interf. 2011, 3, 1457.
(b) Rajajayavel, S. R.; Ghoshal, S. Water Res. 2015, 78, 144.
(c) Fan, D. M.; Johnson, G. O.; Tratnyek, P. G.; Johnson, R. L. Environ. Sci. Technol. 2016, 50, 9558.
(d) Kim, E. J.; Murugesan, K.; Kim, J. H.; Tratnyek, P. G.; Chang, Y. S. Ind. Eng. Chem. Res. 2013, 52, 9343.
(e) Han, Y.-L.; Yan, W.-L. Environ. Sci. Technol. 2016, 50, 12992.
(f) Li, D.; Mao, Z.; Zhong, Y.; Huang, W.-L.; Wu, Y.-D.; Peng, P.-A. Water Res. 2016, 103, 1.
[6] (a) Chen, H.; Zhang, Z.-L.; Yang, Z.-L. Chem. Eng. J. 2015, 273, 481.
(b) Zhang, Y.-L.; Zhang, K.; Dai, C.-M. Chem. Eng. J. 2014, 244, 438.
(c) Matta, R.; Hanna, K.; Chiron, S. Sci. Total Environ. 2007, 385, 242.
(d) Bea, S.; Kim, D.; Lee, W. Appl. Catal., B 2013, 134, 93.
[7] He, F.; Gu, Y.; Wan, S. PCT/CN2016/080692.
[8] Guo, X.-J.; Yang, Z.; Dong, H.-Y.; Guan, X.-H.; Ren, Q.-D.; Lv, X.-F.; Jin, X. Water Res. 2016, 88, 671.
[9] (a) Anipsitakis, G. P.; Dionysiou, D. D. Environ. Sci. Technol. 2003, 37, 4790.
(b) De, A. K.; Chaudhuri, B.; Bhattacharjee, S.; Dutta, B. K. J. Hazard. Mater. 1999, 64, 91.
[10] (a) Fang, G. D.; Dionysiou, D. D.; Al-Abed, S. R.; Zhou, D. M. Appl. Catal., B 2013, 129, 325.
(b) He, F.; Zhao, W.-R.; Liang, L.; Gu, B.-H. Environ. Sci. Technol. Lett. 2014, 1, 499.
/
| 〈 |
|
〉 |