Progress in Organic Fluorescent Thermometers
Received date: 2017-07-27
Online published: 2017-09-29
Supported by
Project supported by the National Natural Science Foundation of China (No. 21233011) and the 973 Program (Nos. 2013CB834703 and 2013CB834505).
Temperature is a basic physical parameter. Accurate measurement of temperature is of importance to scientific research and to industry production and life. Fluorescent temperature sensing, as a new method for temperature measurement, has received much attention because of its high resolution, fast response and observation with bear eyes, etc. Organic fluorescence probes are firstly used in fluorescent temperature sensing due to the versatility of structures, easier modification, and the consequent multiple spectral responses. The fluorescent thermometers can be applied in the temperature sensing of large area, microfluids, biological systems and so on, which make them attractive in the field of fluorescent probes research. In recent years, fluorescent thermometers based on organic fluorescence probes have made remarkable progress. Two major kinds of organic fluorescence thermometers are classified in this review based on the response of fluorescence wavelength, one is the single-wavelength response type, and the other is the ratiometric one. For the single-wavelength type, there are thermal-quenching and thermal-enhancing fluorescence thermometers based on the temperature-dependent trend of emission intensity. At the earlier stage, organic chromophores with high fluorescence quantum yields are adopted as the thermal quenching fluorescence thermometer, and recently a series of conformation-regulated organic thermometers based on dendritic structure and aggregation-induced emission chromophore was developed. Thermal response macromolecules including PNIPAM, PEG and DNA are widely used to create thermal responsive microenvironment to regulate chromophore emission, and then develop thermal-enhancing fluorescence thermometers. Ratiometric fluorescence thermometers show better sensitivity and accuracy than single-wavelength ones due to their self-correction property based on the different thermal-response of emission at two wavelengths. Several kinds of ratiometric sensing systems have been developed, which are based on dye-copolymerized/doped polymer systems, monomer-excimer ratiometric emission, chromophores with thermal transition of local excited state and twisted intramolecular charge transfer state, and chromophores with thermal-induced crystal transfer. In this review, recent advances of organic fluorescence thermometers mentioned above will be presented and the challenges and the future development will be discussed.
Qin Tianyi , Zeng Yi , Chen Jinping , Yu Tianjun , Li Yi . Progress in Organic Fluorescent Thermometers[J]. Acta Chimica Sinica, 2017 , 75(12) : 1164 -1172 . DOI: 10.6023/A17070341
[1] Kennedy, J. J. Rev Geophys. 2014, 52, 1.
[2] Ross-Pinnock, D.; Maropoulos, P. G. Proc. Inst. Mech. Eng. B 2016, 230, 793.
[3] Rolls, K.; Armstrong, K.; Keating, L.; Wrightson, D.; Walker, S.; Masters, J. Aust. Crit. Care 2014, 27, 49.
[4] Sarua, A.; Ji, H. F.; Kuball, M.; Uren, M. J.; Martin, T.; Hilton, K. P.; Balmer, R. S. IEEE T Electron. Dev. 2006, 53, 2438.
[5] Ring, E. F. J. Infrared Phys. Technol. 2007, 49, 297.
[6] Lira, I.; Santos, P. R. Metrologia 1999, 36, 415.
[7] Klason, P.; Holmsten, M.; Andersson, A.; Lau, P.; Kok, G. J. P. Temperature: Its Measurement and Control in Science and Industry, Vol. 8, AIP Publishing, Los Angeles, California, USA, 2013, p. 987.
[8] Revil, A.; Meyer, C. D.; Niu, Q. Geophysics 2016, 81, E243.
[9] Bennet, M. A.; Richardson, P. R.; Arlt, J.; McCarthy, A.; Buller, G. S.; Jones, A. C. Lab Chip 2011, 11, 3821.
[10] Marciniak, L.; Bednarkiewicz, A.; Kowalska, D.; Strek, W. J. Mater. Chem. C 2016, 4, 5559.
[11] Lou, J. F.; Finegan, T. M.; Mohsen, P.; Hatton, T. A.; Laibinis, P. E. Rev. Anal. Chem. 1999, 18, 235.
[12] Song, Q. S.; Zhou, W.; Wu, X. M.; Wu, F. Acta Chim. Sinica 2016, 74, 435. (宋秋生, 周稳, 吴新民, 吴凡, 化学学报, 2016, 74, 435.)
[13] Wang, X. D.; Song, X. H.; He, C. Y.; Yang, C. J.; Chen, G. N.; Chen, X. Anal. Chem. 2011, 83, 2434.
[14] Vlaskin, V. A.; Janssen, N.; van Rijssel, J.; Beaulac, R.; Gamelin, D. R. Nano Lett. 2010, 10, 3670.
[15] Barilero, T.; Le Saux, T.; Gosse, C.; Jullien, L. Anal. Chem. 2009, 81, 7988.
[16] McLaurin, E. J.; Bradshaw, L. R.; Gamelin, D. R. Chem. Mater. 2013, 25, 1283.
[17] Gosse, C.; Bergaud, C.; Low, P. Top Appl. Phys. 2009, 118, 301.
[18] Heyes, A. L.; Seefeldt, S.; Feist, J. P. Opt. Laser Technol. 2006, 38, 257.
[19] Ishiwada, N.; Ueda, T.; Yokomori, T. Luminescence 2011, 26, 381.
[20] Cao, C.; Liu, X. G.; Qiao, Q. L.; Zhao, M.; Yin, W. T.; Mao, D. Q.; Zhang, H.; Xu, Z. C. Chem. Commun. 2014, 50, 15811.
[21] Hsia, C. H.; Wuttig, A.; Yang, H. ACS Nano 2011, 5, 9511.
[22] Haro-Gonzalez, P.; Martinez-Maestro, L.; Martin, I. R.; Garcia-Sole, J.; Jaque, D. Small 2012, 8, 2652.
[23] Kalytchuk, S.; Polakova, K.; Wang, Y.; Froning, J. P.; Cepe, K.; Rogach, A. L.; Zboril, R. ACS Nano 2017, 11, 1432.
[24] Li, H.; Zhang, Y. D.; Shao, L.; Htwe, Z.; Yuan, P. Opt. Mater. Express 2017, 7, 1077.
[25] Deepankumar, K.; Nadarajan, S. P.; Bae, D. H.; Baek, K. H.; Choi, K. Y.; Yun, H. Biotechnol. Bioproc. E 2015, 20, 67.
[26] Wang, X. D.; Wolfbeis, O. S.; Meier, R. J. Chem. Soc. Rev. 2013, 42, 7834.
[27] Low, P.; Kim, B.; Takama, N.; Bergaud, C. Small 2008, 4, 908.
[28] Jung, W.; Kim, Y. W.; Yim, D.; Yoo, J. Y. Sensor Actuators, A-Phys. 2011, 171, 228.
[29] Guan, X. L.; Liu, X. Y.; Su, Z. X.; Liu, P. React. Funct. Polym. 2006, 66, 1227.
[30] Chapman, C. F.; Liu, Y.; Sonek, G. J.; Tromberg, B. J. Photochem. Photobiol. 1995, 62, 416.
[31] Pais, V. F.; Lassaletta, J. M.; Fernandez, R.; El-Sheshtawy, H. S.; Ros, A.; Pischel, U. Chem.-Eur. J. 2014, 20, 7638.
[32] Zeng, Y.; Li, P.; Liu, X. Y.; Yu, T. J.; Chen, J. P.; Yang, G. Q.; Li, Y. Polym. Chem.-UK 2014, 5, 5978.
[33] Arai, S.; Lee, S. C.; Zhai, D. T.; Suzuki, M.; Chang, Y. T. Sci. Rep.-UK 2014, 4, 6701.
[34] Arai, S.; Suzuki, M.; Park, S. J.; Yoo, J. S.; Wang, L.; Kang, N. Y.; Ha, H. H.; Chang, Y. T. Chem. Commun. 2015, 51, 8044.
[35] Wang, H.; Wu, Y. Q.; Tao, P.; Fan, X.; Kuang, G. C. Chem.-Eur. J. 2014, 20, 16634.
[36] Wang, H.; Wu, Y. Q.; Shi, Y. L.; Tao, P.; Fan, X.; Su, X. Y.; Kuang, G. C. Chem.-Eur. J. 2015, 21, 3219.
[37] Ke, G. L.; Wang, C. M.; Ge, Y.; Zheng, N. F.; Zhu, Z.; Yang, C. J. J. Am. Chem. Soc. 2012, 134, 18908.
[38] Ebrahimi, S.; Akhlaghi, Y.; Kompany-Zareh, M.; Rinnan, A. ACS Nano 2014, 8, 10372.
[39] Guo, Y. Z.; Yu, X.; Xue, W. W.; Huang, S. S.; Dong, J.; Wei, L. H.; Maroncelli, M.; Li, H. P. Chem. Eng. J. 2014, 240, 319.
[40] Zhou, H.; Liu, F.; Wang, X. B.; Yan, H.; Song, J.; Ye, Q.; Tang, B. Z.; Xu, J. W. J. Mater. Chem. C 2015, 3, 5490.
[41] Uchiyama, S.; Matsumura, Y.; de Silva, A. P.; Iwai, K. Anal. Chem. 2003, 75, 5926.
[42] Shiraishi, Y.; Miyarnoto, R.; Hirai, T. Langmuir 2008, 24, 4273.
[43] Coppeta, J.; Rogers, C. Exp. Fluids 1998, 25, 1.
[44] Chen, C. Y.; Chen, C. T. Chem. Commun. 2011, 47, 994.
[45] Brites, C. D. S.; Lima, P. P.; Silva, N. J. O.; Millan, A.; Amaral, V. S.; Palacio, F.; Carlos, L. D. Nanoscale 2012, 4, 4799.
[46] Qiao, J.; Chen, C. F.; Qi, L.; Liu, M. R.; Dong, P.; Jiang, Q.; Yang, X. Z.; Mu, X. Y.; Mao, L. Q. J. Mater. Chem. B 2014, 2, 7544.
[47] Uchiyama, S.; Tsuji, T.; Ikado, K.; Yoshida, A.; Kawamoto, K.; Hayashi, T.; Inada, N. Analyst 2015, 140, 4498.
[48] Wu, Y. S.; Liu, J. J.; Ma, J. W.; Liu, Y. C.; Wang, Y.; Wu, D. C. ACS Appl. Mater. Interfaces 2016, 8, 14396.
[49] Ito, A.; Ishizaka, S.; Kitamura, N. Phys. Chem. Chem. Phys. 2010, 12, 6641.
[50] Braun, D.; Rettig, W. Chem. Phys. 1994, 180, 231.
[51] Xia, T. K.; Wang, L. L.; Qu, Y.; Rui, Y. C.; Cao, J.; Hu, Y.; Yang, J.; Wu, J. W.; Xu, J. L. J. Mater. Chem. C 2016, 4, 5696.
[52] Feng, J.; Tian, K. J.; Hu, D. H.; Wang, S. Q.; Li, S. Y.; Zeng, Y.; Li, Y.; Yang, G. Q. A. Angew. Chem., Int. Ed. 2011, 50, 8072.
[53] Feng, J.; Xiong, L.; Wang, S. Q.; Li, S. Y.; Li, Y.; Yang, G. Q. Adv. Func. Mater. 2013, 23, 340.
[54] Liu, J.; Guo, X. D.; Hu, R.; Xu, J.; Wang, S. Q.; Li, S. Y.; Li, Y.; Yang, G. Q. Anal. Chem. 2015, 87, 3694.
[55] Liu, X.; Li, S. Y.; Feng, J.; Li, Y.; Yang, G. Q. Chem. Commun. 2014, 50, 2778.
[56] Lou, J. F.; Hatton, T. A.; Laibinis, P. E. Anal. Chem. 1997, 69, 1262.
[57] Kaushlendra, K.; Asha, S. K. J. Phys. Chem. B 2014, 118, 4951.
[58] Zeng, Y.; Li, Y. Y.; Li, M.; Yang, G. Q.; Li, Y. J. Am. Chem. Soc. 2009, 131, 9100.
[59] Qin, T. Y.; Zeng, Y.; Chen, J. P.; Yu, T. J.; Li, Y. Acta Chim. Sinica 2017, 75, 99. (秦天依, 曾毅, 陈金平, 于天君, 李嫕, 化学学报, 2017, 75, 99.)
[60] Mutai, T.; Satou, H.; Araki, K. Nat. Mater. 2005, 4, 685.
[61] Zhang, X. Q.; Chi, Z. G.; Xu, B. J.; Jiang, L.; Zhou, X.; Zhang, Y.; Liu, S. W.; Xu, J. R. Chem. Commun. 2012, 48, 10895.
[62] Zhu, Q. H.; Yang, W. J.; Zheng, S. C.; Sung, H. H. Y.; Williams, I. D.; Liu, S. W.; Tang, B. Z. J. Mater. Chem. C 2016, 4, 7383.
/
〈 |
|
〉 |