Article

Preliminary Study of Ni and P Low-doped Pd-based Electrocatalysts Toward Ethanol Oxidation Reaction in Alkaline Media

  • Zhu Chan ,
  • Hai Yang ,
  • Zhao Zhigang ,
  • Yang Yaoyue
Expand
  • College of Chemistry and Environmental Protection Engineering, Southwest Minzu University, Chengdu 610041

Received date: 2017-06-26

  Online published: 2017-10-10

Supported by

Project supported by the National Natural Science Foundation of China (No. 21603177), the Natural Science Foundation of Sichuan Province (No. 2016JY0212), the Fundamental Research Funds for the Central Universities (No. 2017NGJPY05) and the Innovation Funds for SMU students (No. 201610656050).

Abstract

Among currently reported anodic nano-alloy electrocatlysts for direct alkaline ethanol fuel cells (DAEFCs), the mass fraction (w) of co-catalysts is generally larger than 20%. This could increase the thickness of the catalyst layer in Membrane Electrode Assembly (MEA), which not only decreases the discharge voltage of fuel cells, also reduces the utilization of the noble metals such as Pt and Pd. To solve this problem, here we synthesized a series of Pd-Ni-P alloy electrocatalysts with ultra-low doping amount of Ni and P, using ca. 1.5 mg NaH2PO2 as reducing agent. To obtain different doping amount of Ni and P, the pH value of the synthetic solution was adjusted from 8 to 12 by 0.1 mol/L NaOH. Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES) results showed that the mass fraction of Ni and P were low to 0.2% and 0.05%, respectively, when the pH value of the synthetic solution is 10. Transmission Electron Microscopy (TEM) images showed that nanoparticles were distributed evenly on the carbon base, and their mean particle sizes increased from ca. 3.78 nm to ca. 5.4 nm with alkalinity of synthetic solutions increasing. Cyclic Voltammograms in 0.5 mol/L CH3CH2OH+1 mol/L NaOH solution revealed that the catalyst obtained under the pH 10 synthetic solution (hereafter denoted as Pd-Ni-P/C-pH10) gave a highest apparent current density of ca. 2466 mA•mg-1 Pd, nearly 2.7 times in respect of that of the commercial Pd/C catalyst (JM). Meanwhile, the durability of Pd-Ni-P/C-pH10 for ethanol oxidation was improved by ca. 2.8 times compared to commercial catalyst. Relative to pure Pd, the binding energy of Pd 3d5/2of as-prepared catalysts all positively shifted, suggesting an obvious electronic interaction between Pd, Ni and P component in as-prepared catalysts. This interaction could led to a shift of the d-band center of Pd component, which may play a pivotal and dominated role in improving the catalytic performance for the ethanol electrooxidation in alkaline media.

Cite this article

Zhu Chan , Hai Yang , Zhao Zhigang , Yang Yaoyue . Preliminary Study of Ni and P Low-doped Pd-based Electrocatalysts Toward Ethanol Oxidation Reaction in Alkaline Media[J]. Acta Chimica Sinica, 2018 , 76(1) : 30 -34 . DOI: 10.6023/A17060279

References

[1] Antolini, E.; Gonzalez, E. J. Power Sources 2010, 195, 3431.
[2] Rabis, A.; Rodriguez, P.; Schmidt, T. J. ACS Catalysis 2012, 2, 864.
[3] Xie, S.-W.; Chen, S.; Liu, Z.-Q.; Xu, C.-W. Int. J. Electrochem. Sci 2011, 6, 882.
[4] Wang, Y.; Zou, S.; Cai, W.-B. Catalysis 2015, 5, 1507.
[5] Bianchini, C.; Shen, P. K. Chem. Rev. 2009, 109, 4183.
[6] Antolini, E. J. Power Sources 2007, 170, 1.
[7] Demirci, U. B. J. Power Sources 2007, 173, 11.
[8] Kitchin, J. R.; Nørskov, J. K.; Barteau, M. A.; Chen, J. Phys. Rev. Lett. 2004, 93, 156801.
[9] Liu, P.; Nørskov, J. K. Phys. Chem. Chem. Phys. 2001, 3, 3814.
[10] Vigier, F.; Coutanceau, C.; Hahn, F.; Belgsir, E.; Lamy, C. J. Electroanal. Chem. 2004, 563, 81.
[11] Yajima, T.; Uchida, H.; Watanabe, M. J. Phys. Chem. B 2004, 108, 2654.
[12] Wang, Y.; Shi, F.-F.; Yang, Y.-Y.; Cai, W.-B. J. Power Sources 2013, 243, 369.
[13] Jiang, R.; Tran, D. T.; McClure, J. P.; Chu, D. ACS Catal. 2014, 4, 2577.
[14] Chen, L.; Lu, L.; Zhu, H.; Chen, Y.; Huang, Y.; Li, Y.; Wang, L. Nat. Commun. 2017, 8, 14136.
[15] Qi, Z.; Geng, H.; Wang, X.; Zhao, C.; Ji, H.; Zhang, C.; Xu, J.; Zhang, Z. J. Power Sources 2011, 196, 5823.
[16] Ahmed, M. S.; Jeon, S. ACS Catal. 2014, 4, 1830.
[17] Ma, L.; He, H.; Hsu, A.; Chen, R. J. Power Sources 2013, 241, 696.
[18] Du, W.; Mackenzie, K. E.; Milano, D. F.; Deskins, N. A.; Su, D.; Teng, X. ACS Catal. 2012, 2, 287.
[19] Mao, H.; Wang, L.; Zhu, P.; Xu, Q.; Li, Q. Int. J. Hydrogen Energy 2014, 39, 17583.
[20] Huang, M.-H.; Jin, B.-Y.; Zhao, L.-H.; Sun, S.-G. Acta Phys.-Chim. Sin. 2017, 33, 563(in Chinese). (黄明辉, 金碧瑶, 赵莲花, 孙世刚, 物理化学学报, 2017, 33, 563.)
[21] Tao, X.; Li, L.; Qi, X.; Wei, Z. Acta Chim. Sinica 2016, 75, 237(in Chinese). (陶熊新, 李莉, 齐学强, 魏子栋, 化学学报, 2016, 75, 237.)
[22] Lai, Q.-Z.; Yin, G.-P.; Wang, Z.-B. J. Chem. Eng. Chin. Univ. 2009, 23, 756(in Chinese). (赖勤志, 尹鸽平, 王振波, 高校化学工程学报, 2009, 23, 756.)
[23] Wang, N.; Zhang, W.; Wang, Y.-X. Chem. Ind. Eng. 2017, 34, 80(in Chinese). (王娜, 张文, 王宇新, 化学工业与工程, 2017, 34, 80.)
[24] Wang, J.-Y.; Kang, Y.-Y.; Yang, H.; Cai, W.-B. J. Phys. Chem. C 2009, 113, 8366.
[25] Yang, G.; Chen, Y.; Zhou, Y.; Tang, Y.; Lu, T. Electrochem. Commun. 2010, 12, 492.
[26] Mao, X. Y.; Liang, X. P.; Liu, J.; Liu, L.; Liu, K. Key Eng. Mater. 2014, 633, 330.
[27] Dutta, A.; Datta, J. J. Phys. Chem. C 2012, 116, 25677.
[28] Yin, J.; Shan, S.; Ng, M. S.; Yang, L.; Mott, D.; Fang, W.; Kang, N.; Luo, J.; Zhong, C. J. Langmuir 2013, 29, 9249.
[29] Mao, H.; Huang, T.; Yu, A. S. J. Mater. Chem. A 2014, 2, 16378.
[30] Li, L.; Chen, M.; Huang, G.; Yang, N.; Zhang, L.; Wang, H.; Liu, Y.; Wang, W.; Gao, J. J. Power Sources 2014, 263, 13.
[31] Huang, Z.; Zhou, H.; Li, C.; Zeng, F.; Fu, C.; Kuang, Y. J. Mater. Chem. 2012, 22, 1781.
[32] Shen, S.; Zhao, T.; Xu, J.; Li, Y. J. Power Sources 2010, 195, 1001.
[33] Wakisaka, M.; Mitsui, S.; Hirose, Y.; Kawashima, K.; Uchida, H.; Watanabe, M. J. Phys. Chem. B 2006, 110, 23489.
[34] Wang, J.-Y.; Zhang, H.-X.; Jiang, K.; Cai, W.-B. J. Am. Chem. Soc. 2011, 133, 14876.
[35] Rodriguez, P.; Kwon, Y.; Koper, M. T. Nat. Chem. 2012, 4, 177.
[36] Yang, Y.-Y.; Ren, J.; Li, Q.-X.; Zhou, Z.-Y.; Sun, S.-G.; Cai, W.-B. ACS Catal. 2014, 4, 798.

Outlines

/