Article

FRET-based Ratiometric MicroRNA Detection with G-quadruplex-stabilized Silver Nanoclusters

  • Lin Ruoyun ,
  • Chen Yang ,
  • Tao Guangyu ,
  • Pei Xiaojing ,
  • Liu Feng ,
  • Li Na
Expand
  • Beijing National Laboratory for Molecular Sciences(BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering Peking University, Beijing 100871, China

Received date: 2017-09-15

  Online published: 2017-11-07

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21475004 and 21535006).

Abstract

Fluorescent DNA-stabilized Ag nanoclusters (DNA-Ag NCs), a class of excellent luminescence probes with excellent optical properties, have been applied in assorted sensing and imaging fields. To date, most of the quantifications were based on the direct signal change of DNA-Ag NCs caused by target recognition, which inevitably jeopardizes the reproducibility and robustness of methods when experimental settings or detecting conditions are changed. In this work, using the highly fluorescent G-quadruplex-stabilized Ag NCs (GQ-Ag NCs) and Cy5 as the donor-acceptor pair, we for the first time developed a FRET based ratiometric method for miRNA detection. A rationally optimized hairpin recognition structure was attached to the G-quadruplex template of the Ag nanocluster. The introduction of target sequence opened the hairpin, led to the approximation of the donor nanocluster and the acceptor Cy5, enabled the energy transfer between the FRET pair, and thus generated the optical signal change. The Cy5 tag sequence was designed to be universal, simplifying the experimental design and reduced the cost in applications. The optical signal for quantitation was determined by the signal difference between the Ag nanocluster and the Cy5 fluorophore, with the fluorescence intensity of Cy5 used as internal reference in order to prevent signal variation. MicroRNAs (miRNA) are short RNA molecules that have emerged as a kind of key post-translational regulators of gene expression in eukaryotic organisms. In this study, microRNA let-7a was chosen as the model target of our FRET-based ratiometric detection for demonstration. The linear range and the detection limit of the method on let-7a was 12~300 nmol/L and 6.9 nmol/L, respectively. The proposed method presented reasonable selectivity amongst the members of the same let-7 family. The remarkable recovery in total RNA extracted from HepG2 cell lines demonstrated the potential in clinical applications. The highlights of our work extended the application of DNA-templated Ag NCs and facilitated more understanding of DNA-Ag NCs as the energy donor in FRET design.

Cite this article

Lin Ruoyun , Chen Yang , Tao Guangyu , Pei Xiaojing , Liu Feng , Li Na . FRET-based Ratiometric MicroRNA Detection with G-quadruplex-stabilized Silver Nanoclusters[J]. Acta Chimica Sinica, 2017 , 75(11) : 1103 -1108 . DOI: 10.6023/A17090407

References

[1] Peyser, L. A.; Vinson, A. E.; Bartko, A. P.; Dickson, R. M. Science 2001, 291(5501), 103.
[2] Zheng, J.; Nicovich, P. R.; Dickson, R. M. Annu. Rev. Phys. Chem. 2007, 58, 409.
[3] Richards, C. I.; Choi, S.; Hsiang, J.-C.; Antoku, Y.; Vosch, T.; Bongiorno, A.; Tzeng, Y.-L.; Dickson, R. M. J. Am. Chem. Soc. 2008, 130(15), 5038.
[4] Liu, J. TrAC-Trend. Anal. Chem. 2014, 58, 99.
[5] Han, B.; Wang, E. Anal. Bioanal. Chem. 2012, 402(1), 129.
[6] Choi, S.; Dickson, R. M.; Yu, J. Chem. Soc. Rev. 2012, 41(5), 1867.
[7] Li, T.; Zhang, L.; Ai, J.; Dong, S.; Wang, E. ACS Nano 2011, 5(8), 6334.
[8] Liu, Y.; Zhang, M.; Yin, B.; Ye, B. Anal. Chem. 2012, 84(12), 5165.
[9] Ma, J.; Yin, B.; Wu, X.; Ye, B. Anal. Chem. 2016, 88(18), 9219.
[10] Huang, Z.; Tao, Y.; Pu, F.; Ren, J.; Qu, X. Chem-Eur. J. 2012, 18(21), 6663.
[11] Ai, J.; Guo, W.; Li, B.; Li, T.; Li, D.; Wang, E. Talanta 2012, 88, 450.
[12] Sun, J.; Yang, F.; Zhao, D.; Chen, C.; Yang, X. ACS Appl. Mater. Inter. 2015, 7(12), 6860.
[13] Zhang, P.; Wang, Y.; Chang, Y.; Huang, C. Z. Biosens. Bioe-lectron. 2013, 49, 433.
[14] Sengupta, B.; Springer, K.; Buckman, J. G.; Story, S. P.; Abe, O. H.; Hasan, Z. W.; Prudowsky, Z. D.; Rudisill, S. E.; Degtyareva, N. N.; Petty, J. T. J. Phys. Chem. C 2009, 113(45), 19518.
[15] Ihara, T.; Ishii, T.; Araki, N.; Wilson, A. W.; Jyo, A. J. Am. Chem. Soc. 2009, 131(11), 3826.
[16] Feng, L.; Huang, Z.; Ren, J.; Qu, X. Nucleic Acids Res. 2012, 40(16), e122.
[17] Tao, G.; Chen, Y.; Lin, R.; Zhou, J.; Pei, X.; Liu, F.; Li, N. Nano Res. 2017, https://doi.org/10.1007/s12274-017-1844-4.
[18] Krol, J.; Loedige, I.; Filipowicz, W. Nat. Rev. Genet. 2010, 11(9), 597.
[19] Ameres, S. L.; Zamore, P. D. Nat. Rev. Mol. Cell Bio. 2013, 14(8), 475.
[20] Urbich, C.; Kuehbacher, A.; Dimmeler, S. Cardiovasc. Res. 2008, 79(4), 581.
[21] Esteller, M. Nat. Rev. Genet. 2011, 12(12), 861.
[22] Zhang, B.; Pan, X.; Cobb, G. P.; Anderson, T. A. Dev. Biol. 2007, 302(1), 1.
[23] Iorio, M. V.; Croce, C. M. EMBO Mol. Med. 2012, 4(3), 143.
[24] Liu, C.; Wang, Z.; Jia, H.; Li, Z. Chem. Commun. 2011, 47(16), 4661.
[25] Zhang, P.; Zhang, J.; Wang, C.; Liu, C.; Wang, H.; Li, Z. Anal. Chem. 2014, 86(2), 1076.
[26] Li, R.; Wang, Q.; Yin, B.; Ye, B. Biosens. Bioelectron. 2016, 77, 995.
[27] Shah, P.; Thulstrup, P. W.; Cho, S. K.; Bhang, Y.-J.; Ahn, J. C.; Choi, S. W.; Bjerrum, M. J.; Yang, S. W. Analyst 2014, 139(9), 2158.
[28] Yang, S. W.; Vosch, T. Anal. Chem. 2011, 83(18), 6935.
[29] Zhang, M.; Liu, Y.; Yu, C.; Yin, B.; Ye, B. Analyst 2013, 138(17), 4812.
[30] Xia, X.; Hao, Y.; Hu, S.; Wang, J. Biosens. Bioelectron. 2014, 51, 36.
[31] Shah, P.; Choi, S. W.; Kim, H.-j.; Cho, S. K.; Bhang, Y.-J.; Ryu, M. Y.; Thulstrup, P. W.; Bjerrum, M. J.; Yang, S. W. Nucleic Acids Res. 2016, 44(6), e57.
[32] Enkin, N.; Wang, F.; Sharon, E.; Albada, H. B.; Willner, I. ACS Nano 2014, 8(11), 11666.
[33] Enkin, N.; Sharon, E.; Golub, E.; Willner, I. Nano Lett. 2014, 14(8), 4918.
[34] Schultz, D.; Copp, S. M.; Markeševi?, N.; Gardner, K.; Oemrawsingh, S. S. R.; Bouwmeester, D.; Gwinn, E. ACS Nano 2013, 7(11), 9798.
[35] Jiang, H.; Xu, G.; Sun, Y.; Zheng, W.; Zhu, X.; Wang, B.; Zhang, X.; Wang, G. Chem. Commun. 2015, 51(59), 11810.
[36] Ye, Y.; Xia, L.; Xu, D.; Xing, X.; Pang, D.; Tang, H. Biosens. Bioelectron. 2016, 85, 837.
[37] Li, S.; Fu, Y.; Ma, X.; Zhang, Y. Biosens. Bioelectron. 2017, 88, 210.
[38] Wang, W.; Zhan, L.; Du, Y.; Leng, F.; Chang, Y.; Gao, M.; Huang, C. Anal. Methods 2013, 5(20), 5555.
[39] Wang, Y.; Zhang, X.; Liu, C.; Zhou, X. Acta Chim. Sinica 2017, 75(7), 692. (王雅芬, 张雄, 刘朝兴, 周翔, 化学学报, 2017, 75(7), 692.)
[40] Shao, Y.; Li, C.; Zhou, X.; Chen, P.; Yang, Z.; Li, Z.; Liu, D. Acta Chim. Sinica 2015, 73(8), 815.(邵昱, 李闯, 周旭, 陈平, 杨忠强, 李志波, 刘冬生, 化学学报, 2015, 73(8), 815.)
[41] Lin, C.; Zhai, W.; Fan, L.; Li, X. Acta Chim. Sinica 2014, 72(6), 709. (蔺超, 翟伟, 范楼珍, 李晓宏, 化学学报, 2014, 72(6), 709.)
[42] Liu, X.; Wang, Y.; Huang, Y.; Feng, X.; Fan, Q.; Huang, W. Acta Chim. Sinica 2016, 74(8), 664. (刘兴奋, 王亚腾, 黄艳琴, 冯晓苗, 范曲立, 黄维, 化学学报, 2016, 74(8), 664.)
[43] Lin, C.; Gong, H.; Fan, L.; Li, X. Acta Chim. Sinica 2014, 72(6), 704. (蔺超, 宫贺, 范楼珍, 李晓宏, 化学学报, 2014, 72(6), 704.)
[44] Lin, R.; Tao, G.; Chen, Y.; Chen, M.; Liu, F.; Li, N. Chem-Eur. J. 2017, 10893.
[45] Mujumdar, R. B.; Ernst, L. A.; Mujumdar, S. R.; Lewis, C. J.; Waggoner, A. S. Bioconjug. Chem. 1993, 4(2), 105.

Outlines

/