Communication

Single-Molecule Analysis of Colorectal Cancer-associated MicroRNAs via a Biological Nanopore

  • Hu Zhengli ,
  • Du Jihui ,
  • Ying Yilun ,
  • Peng Yueyi ,
  • Cao Chan ,
  • Long Yi-Tao
Expand
  • a Key Laboratory for Advanced Materials & School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China;
    b Central Laboratory, Affiliated Nanshan Hospital, Shenzhen University, Shenzhen 518052, China

Received date: 2017-09-22

  Online published: 2017-11-07

Supported by

Project supported by the National Key R&D Program of China (No. 2017YFC0906500), the National Natural Science Foundation of China (No. 21505043), Innovation Program of Shanghai Municipal Education Commission (No. 2017-01-07-00-02-E00023) and the Fundamental Research Funds for the Central Universities (Nos. 222201714012, 222201718001, 222201717003).

Abstract

MicroRNAs (miRNAs), 18~22 nucleotides in length, are a class of single-strand noncoding short RNAs and have been used as biomarkers for diagnosis and prognosis of cancers. Herein, an α-hemolysin (α-HL) nanopore was adapted for the colorectal cancer-associated miRNAs analysis, with the merits of high-throughput, ultra-sensitivity and no requirements of amplification/labelling. DNA probes, consisting of a signal tag in each end and a response element in the middle section, were designed. The response element could be well-matched with miRNA and utilized for specific recognition of the target miRNA, while the signal tag increased the capture rate of the miRNA·probe complex. Due to the poor stacking of thymine residues, poly(dT)n need to overcome a high entropic barrier when traversing through the α-HL nanopore confined space, resulting in distinct double-level blocked events, which contributes to the visualized differences in signal shape and prolonged duration. Thus, poly(dT)n was selected as the signal tag of probe. Added in the cis side of α-HL, miRNA·probe was forced to traverse across the nanopore confined space under the potential of 140 mV through a pair of Ag/AgCl electrodes (cis grounded). Typical three-stage blocked event was observed, reflecting the translocation process:capture and dissociation of miRNA·probe, translocation of probe, temporarily residence and translocation of miRNA. Stage 1 (S1) represented the process from capture of miRNA·probe complex to translocation of the entire probe. The typical blocked events of miRNA 92·probe 92 showed a two-level S1, where Level 1 (L1) with a current blockage of 0.57±0.01 was generated mainly by translocation of the poly(dT)40 signal tag. As the duration is associated with DNA length, probe 21 with smaller poly(dT)20 signal tag was designed to detect miRNA 21, resulting in a shorter L1 of miRNA 21·probe 21 whose duration (tD-L1) was 1/3 of that for miRNA 92·probe 92. As the signal shapes vary with DNA sequences, probe 16 with signal tag of poly(dC)40 was used to sense miRNA 16, with miRNA 16·probe 16 producing a different single-level S1 with miRNA 92·probe 92 and miRNA 21·probe 21. The statistical results demonstrated that the three kinds of miRNA·probe produced different durations for S1 (tD-S1), possibly indicating the differences in probe-α-HL interaction. Therefore, miRNA 92, miRNA 21 and miRNA 16 could be well identified by tD-L1 (signal shape) and tD-S1 (duration). Moreover, the serum sample have been tested. Hence, α-HL nanopore can be applied to build ultrasensitive single molecule biosensor for miRNA.

Cite this article

Hu Zhengli , Du Jihui , Ying Yilun , Peng Yueyi , Cao Chan , Long Yi-Tao . Single-Molecule Analysis of Colorectal Cancer-associated MicroRNAs via a Biological Nanopore[J]. Acta Chimica Sinica, 2017 , 75(11) : 1087 -1090 . DOI: 10.6023/A17090433

References

[1] Lu, J.; Getz, G.; Miska, E. A.; Alvarez-saavedra, E.; Lamb, J.; Peck, D.; Sweet-cordero, A.; Ebert, B. L.; Mak, R. H.; Ferrando, A. A.; Downing, J. R.; Jacks, T.; Horvitz, H. R.; Golub, T. R. Nature 2005, 435, 834.
[2] Várallyay, E.; Burgyán, J.; Havelda, Z. Nature Protocols 2008, 3, 190.
[3] Park, J. L.; Park, S. M.; Kwon, O. H.; Lee, H. C.; Kim, J. Y.; Seok, H. H.; Lee, W. S.; Lee, S. H.; Kim, Y. S.; Woo, K. M.; Kim, S. Y. Electrophoresis 2014, 35, 3062.
[4] Kasianowicz, J. J.; Brandin, E.; Branton, D.; Deamer, D. W. Proc. Natl. Acad. Sci. 1996, 93, 13770.
[5] Cao, C.; Liao, D.-F.; Ying, Y.-L.; Long, Y.-T. Acta Chim. Sinica 2016, 74, 734(in Chinese). (曹婵, 廖冬芳, 应佚伦, 龙亿涛, 化学学报, 2016, 74, 734).
[6] Wang, H.-Y.; Li, Y.; Qin, L.-X.; Heyman, A.; Shoseyov, O.; Willner, I.; Long, Y.-T.; Tian, H. Chem. Commun. 2013, 49, 1741.
[7] Manrao, E. A.; Derrington, I. M.; Laszlo, A. H.; Langford, K. W.; Hopper, M. K.; Gillgren, N.; Pavlenok, M.; Niederweis, M.; Gundlach, J. H. Nat. Biotechnol. 2012, 30, 349.
[8] Cao, C.; Ying, Y.-L.; Hu, Z.-L.; Liao, D.-F.; Tian, H.; Long, Y.-T. Nat. Nanotechnol. 2016, 11, 713.
[9] Clarke, J.; Wu, H.-C.; Jayasinghe, L.; Patel, A.; Reid, S.; Bayley, H. Nat. Nanotechnol. 2009, 4, 265.
[10] Stefureac, R.; Long, Y.-T.; Kraatz, H.-B.; Howard, P.; Lee, J. S. Biochemistry 2006, 45, 9172.
[11] Sutherland, T. C.; Long, Y.-T.; Stefureac, R.-I.; Bediako-Amoa, I.; Kraatz, H.-B.; Lee, J. S. Nano Lett. 2004, 4, 1273.
[12] Wang, H.-Y.; Ying, Y.-L.; Li, Y.; Kraatz, H.-B.; Long, Y.-T. Anal. Chem. 2011, 83, 1746.
[13] Ying, Y.-L.; Zhang, X.; Liu, Y.; Xue, M.-Z.; Li, H.-L.; Long, Y.-T. Acta Chim. Sinica 2013, 71, 44(in Chinese). (应佚伦, 张星, 刘钰, 薛梦竹, 李洪林, 龙亿涛, 化学学报, 2013, 71, 44).
[14] Ying, Y.-L.; Wang, H.-Y.; Sutherland, T. C.; Long, Y.-T. Small 2011, 7, 87.
[15] Meng, F.-N.; Yao, X.-Y.; Zhang, J.-J.; Ying, Y.-L.; Tian, H. ACS Sens. 2016, 1, 1398.
[16] Rauf, S.; Zhang, L.; Ali, A.; Liu, Y.; Li, J.-H. ACS Sens. 2017, 2, 227.
[17] Ying, Y.-L.; Long, Y.-T. Sci. China:Chem. 2017, 60, 1187.
[18] Long, Y.-T.; Zhang, M. N. Sci. China Ser. B-Chem. 2009, 52, 731.
[19] Wang, Y.; Zheng, D.-L.; Tan, Q.-L.; Wang, M. X.; Gu, L.-Q. Nat. Nanotechnol. 2011, 6, 668.
[20] Song, L.-Z.; Hobaugh, M. R.; Shustak, C.; Cheley, S.; Bayley, H.; Gouauxt, J. E. Science 1996, 274, 1859.
[21] Ying, Y.-L.; Li, D.-W.; Li, Y.; Lee, J. S.; Long, Y.-T. Chem. Commun. 2011, 47, 5690.
[22] Xi, D.-M.; Shang, J.-Z.; Fan, E.-G.; You, J.-M.; Zhang, S.-S.; Wang, H. Anal. Chem. 2016, 88, 10540.
[23] Meller, A.; Branton, D. Electrophoresis 2002, 23, 2583.
[24] Gu, Z.; Ying, Y.-L.; Cao, C.; He, P.-G.; Long, Y.-T. Anal. Chem. 2015, 87, 907.

Outlines

/