Article

Pyrene-Based Conjugated Microporous Polymer as High Performance Electrode for Lithium-Ion Batteries

  • He Qian ,
  • Zhang Chong ,
  • Li Xiao ,
  • Wang Xue ,
  • Mu Pan ,
  • Jiang Jiaxing
Expand
  • School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, China

Received date: 2017-11-02

  Online published: 2017-12-04

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21574077, 21304055).

Abstract

Lithium ion batteries (LIBs) have been recognized as one of the most popular and promising energy storage devices because of their high energy density and cyclability. The leading electrode materials for LIBs are mainly based on inorganic compounds materials because of their excellent electrochemical performances. Compared with inorganic compounds or metal-based electrode materials, organic electrode materials have been less explored for LIBs, but they are promising because of their synthetic diversity, flexible framework, low cost and environmental benignity. Unlike organic small molecules and linear polymers electrodes, which show low surface area and are soluble in electrolyte leading to the low electrochemical performance, conjugated microporous polymers (CMPs) feature with large specific surface area, good physicochemical stability, unique extended π-conjugation along the polymer skeleton and high crosslinked degree, which make CMPs great potential as electrodes for LIBs. In this work, a pyrene-based conjugated microporous polymer (PyDB) has been synthesized via palladium-catalyzed Suzuki cross-coupling reaction from tetrabromopyrene and 1,4-benzenediboronic acid. PyDB is insoluble in common organic solvents tested because of its highly crosslinked polymer structure. Thermogravimetric analysis indicated that the polymer is thermally stable up to 430℃ in nitrogen atmosphere. Nitrogen adsorption-desorption measurement revealed that PyDB has a high Brunauer-Emmet-Teller specific surface area of up to 1283 m2·g-1. PyDB based electrode for LIBs exhibited excellent electrochemical performance. The assembled LIB from PyDB as cathode material shows a discharge capacity of 163 mAh·g-1 at a current density of 50 mA·g-1 with a high capacitance retention of 167 mAh·g-1 after 300 cycles at a current density of 100 mA·g-1. When PyDB was used as anode material, the assembled LIB also exhibits a high capacity of 495 mAh·g-1 at 50 mA·g-1 with a high capacitance retention of 245 mAh·g-1 after 300 cycles at 200 mA·g-1. The excellent electrochemical performance of PyDB could be attributed to its extended π-conjugation structure and porous structure with high surface area, the extended π-conjugation is beneficial to the doping reaction and electronic conduction, while porous structure with high surface area can provide plentiful active sites and promote the transmission of ions.

Cite this article

He Qian , Zhang Chong , Li Xiao , Wang Xue , Mu Pan , Jiang Jiaxing . Pyrene-Based Conjugated Microporous Polymer as High Performance Electrode for Lithium-Ion Batteries[J]. Acta Chimica Sinica, 2018 , 76(3) : 202 -208 . DOI: 10.6023/A17110477

References

[1] Tarascon, J. M.; Armand, M. Nature 2001, 414, 359.
[2] Armand, M.; Tarascon, J. M. Nature 2008, 451, 652.
[3] Qiu, Z. P.; Zhang, Y. J.; Xia, S. B.; Dong, P. Acta Chim. Sinica 2015, 73, 992. (邱振平, 张英杰, 夏书标, 董鹏, 化学学报, 2015, 73, 992.)
[4] Zhang, C.; Yang, X.; Ren, W. F.; Wang, Y. H.; Su, F. B.; Jiang, J.-X. J. Power Sources 2016, 317, 49.
[5] Zheng, Z.; Wu, Z. G.; Xiang, W.; Guo, X. D. Acta Chim. Sinica 2017, 75, 501. (郑卓, 吴振国, 向伟, 郭孝东, 化学学报, 2017, 75, 501.)
[6] Zhang, G. B.; Xiong, T. F.; Pan, X. L.; Yan, M. Y.; Han, C. H.; Mai, L. Q. Acta Chim. Sinica 2016, 74, 582. (张国彬, 熊腾飞, 潘雪雷, 晏梦雨, 韩春华, 麦立强, 化学学报, 2016, 74, 582.)
[7] Zhang, C.; Kong, R.; Wang, X.; Xu, Y. F.; Wang, F.; Ren, W. F.; Wang, Y. H.; Su, F. B.; Jiang, J.-X. Carbon 2017, 114, 608.
[8] Yu, L. T.; Liu, J.; Xu, X. J.; Zhang, L. G.; Hu, R. Z.; Liu, J. W.; Yang, L. C.; Zhu, M. ACS Appl. Mater. Interfaces 2017, 9, 2516.
[9] Reddy, M. V.; Subba Rao, G. V.; Chowdari, B. V. Chem. Rev. 2013, 113, 5364.
[10] McDowell, M. T.; Lee, S. W.; Nix, W. D.; Cui, Y. Adv. Mater. 2013, 25, 4966.
[11] Du, J.; Lin, N.; Qian, Y. T. Acta Chim. Sinica 2017, 75, 147. (杜进, 林宁, 钱逸泰, 化学学报, 2017, 75, 147.)
[12] Ye, Y.; Zhu, J. Y.; Yao, Y. N.; Wang, Y. G.; Wu, P.; Tang, Y. W.; Zhou, Y. M.; Lu, T. H. Acta Chim. Sinica 2015, 73, 151. (叶亚, 朱婧怡, 姚依男, 王雨果, 吴平, 唐亚文, 周益明, 陆天虹, 化学学报, 2015, 73, 151.)
[13] Luo, F.; Zheng, J. Y.; Chu, G.; Liu, B. N.; Zhang, S. L.; Li, H.; Chen, L. Q. Acta Chim. Sinica 2015, 73, 808. (罗飞, 郑杰允, 楮赓, 刘柏男, 张素林, 李泓, 陈立泉, 化学学报, 2015, 73, 808.)
[14] Wang, L.; Zhao, D. D.; Liu, X.; Yu, P.; Fu, H. G. Acta Chim. Sinica 2017, 75, 231. (王蕾, 赵冬冬, 刘旭, 于鹏, 付宏刚, 化学学报, 2017, 75, 231.)
[15] Lyv, Z. Y.; Feng, R.; Zhao, J.; Fan, H.; Xu, D.; Wu, Q.; Yang, L. J.; Chen, Q.; Wang, X. Z.; Hu, Z. Acta Chim. Sinica 2015, 73, 1013. (吕之阳, 冯瑞, 赵进, 范豪, 徐丹, 吴强, 杨立军, 陈强, 王喜章, 胡征, 化学学报, 2015, 73, 1013.)
[16] Yang, Y. Q.; Zhang, Q.; Zhang, S. B.; Li, S. H. Polymer 2013, 54, 5698.
[17] Xu, Y. H.; Jin, S. B.; Xu, H.; Nagai, A.; Jiang, D. L. Chem. Soc. Rev. 2013, 42, 8012.
[18] Dawson, R.; Cooper, A. I.; Adams, D. J. Prog. Polym. Sci. 2012, 37, 530.
[19] Xu, J. W.; Zhang, C.; Wang, X. C.; Jiang, J. X.; Wang, F. Acta Chim. Sinica 2017, 75, 473. (徐佳伟, 张崇, 王迅昶, 蒋加兴, 汪锋, 化学学报, 2017, 75, 473.)
[20] Xu, J. W.; Zhang, C.; Qiu, Z. X.; Lei, Z. Y.; Chen, B.; Jiang, J.-X.; Wang, F. Macromol. Chem. Phys. 2017, 218, 1700275.
[21] Shu, G.; Zhang, C.; Li, Y. D.; Jiang, J. X.; Wang, X. C.; Li, H.; Wang, F. J. Appl. Polym. Sci. 2017, 10, 45907.
[22] Zhang, H. J.; Zhang, C.; Wang, X. C.; Qiu, Z. X.; Liang, X. M.; Chen, B.; Xu, J. W.; Jiang, J.-X.; Li, Y. D.; Li, H.; Wang, F. RSC Adv. 2016, 6, 113826.
[23] Sprick, R. S.; Jiang, J. X.; Bonillo, B.; Ren, S.; Ratvijitvech, T.; Guiglion, P.; Zwijnenburg, M. A.; Adams, D. J.; Cooper, A. I. J. Am. Chem. Soc. 2015, 137, 3265.
[24] Jiang, J. X.; Wang, C.; Laybourn, A.; Hasell, T.; Clowes, R.; Khimyak, Y. Z.; Xiao, J.; Higgins, S. J.; Adams, D. J.; Cooper, A. I. Angew. Chem. Int. Ed. 2011, 50, 1072.
[25] Jiang, J.-X.; Li, Y. Y.; Wu, X. F.; Xiao, J. L.; Adams, D. J.; Cooper, A. I. Macromolecules 2013, 46, 8779.
[26] Xu, Y. F.; Mao, N.; Feng, S.; Zhang, C.; Wang, F.; Chen, Y.; Zeng, J. H.; Jiang, J.-X. Macromol. Chem. Phys. 2017, 218, 1700049.
[27] Xu, Y. F.; Zhang, C.; Mu, P.; Mao, N.; Wang, X.; He, Q.; Wang, F.; Jiang, J.-X. Sci. China:Chem. 2017, 60, 1075.
[28] Wang, X. Y.; Mu, P.; Zhang, C.; Chen, Y.; Zeng, J. H.; Wang, F.; Jiang, J. X. ACS Appl. Mater. Interfaces 2017, 9, 20779.
[29] Xu, F.; Chen, X.; Tang, Z. W.; Wu, D. C.; Fu, R. W.; Jiang, D. L. Chem. Commun. 2014, 50, 4788.
[30] Kou, Y.; Xu, Y. H.; Guo, Z. Q.; Jiang, D. L. Angew. Chem. Int. Ed. 2011, 50, 8753.
[31] Muench, S.; Wild, A.; Friebe, C.; Haupler, B.; Janoschka, T.; Schubert, U. S. Chem. Rev. 2016, 116, 9438.
[32] Yang, H.; Zhang, S. L.; Han, L. H.; Zhang, Z.; Xue, Z.; Gao, J.; Li, Y. J.; Huang, C. S.; Yi, Y. P.; Liu, H. B.; Li, Y. L. ACS Appl. Mater. Interfaces 2016, 8, 5366.
[33] Zhang, S. L.; Huang, W.; Hu, P.; Huang, C. S.; Shang, C. Q.; Zhang, C. J.; Yang, R. Q.; Cui, G. L. J. Mater. Chem. A 2015, 3, 1896.
[34] Bai, L. Y.; Gao, Q.; Zhao, Y. L. J. Mater. Chem. A 2016, 4, 14106.
[35] Haupler, B.; Burges, R.; Friebe, C.; Janoschka, T.; Schmidt, D.; Wild, A.; Schubert, U. S. Macromol. Rapid Commun. 2014, 35, 1367.
[36] Yao, M.; Senoh, H.; Sakai, T.; Kiyobayashi, T. J. Power Sources 2012, 202, 364.
[37] Su, C.; He, H. H.; Xu, L. H.; Zhao, K.; Zheng, C. C.; Zhang, C. J. Mater. Chem. A 2017, 5, 2701.
[38] Zhang, C.; He, Y. W.; Mu, P.; Wang, X.; He, Q.; Chen, Y.; Zeng, J. H.; Wang, F.; Xu, Y. H.; Jiang, J.-X. Adv. Funct. Mater. 2017, 27, 1705432.
[39] Jiang, J. X.; Su, F.; Trewin, A.; Wood, C. D.; Campbell, N. L.; Niu, H.; Dickinson, C.; Ganin, A. Y.; Rosseinsky, M. J.; Khimyak, Y. Z.; Cooper, A. I. Angew. Chem. Int. Ed. 2007, 46, 8574.
[40] Weber, J.; Antonietti, M.; Thomas, A. Macromolecules 2008, 41, 2880.
[41] Su, Y. Z.; Liu, Y. X.; Liu, P.; Wu, D. Q.; Zhuang, X. D.; Zhang, F.; Feng, X. L. Angew. Chem. Int. Ed. 2015, 54, 1812.
[42] Zhu, L. M.; Cao, X. Y. Mater. Lett. 2015, 150, 16.
[43] Xiang, J.; Burges, R.; Häupler, B.; Wild, A.; Schubert, U. S.; Ho, C.-L.; Wong, W.-Y. Polymer 2015, 68, 328.
[44] Xiong, J. Q.; Wei, Z.; Xu, T.; Zhang, Y.; Xiong, C. X.; Dong, L. J. Polymer 2017, 130, 135.
[45] Wang, S.; Wang, Q. Y.; Shao, P. P.; Han, Y. Z.; Gao, X.; Ma, L.; Yuan, S.; Ma, X. J.; Zhou, J. W.; Feng, X.; Wang, B. J. Am. Chem. Soc. 2017, 139, 4258.
[46] Wang, Y.; Qu, Q. T.; Liu, G.; Battaglia, V. S.; Zheng, H. H. Nano. Energy 2017, 39, 200.
[47] Nauroozi, D.; Pejic, M.; Schwartz, P.-O.; Wachtler, M.; Bäuerle, P. RSC Adv. 2016, 6, 111350.
[48] Zhao, R. R.; Cao, Y. L.; Ai, X. P.; Yang, H. X. J. Electroanal. Chem. 2013, 688, 93.

Outlines

/