Article

Self N-Doped Porous Interconnected Carbon Nanosheets Material for Supercapacitors

  • Zhao Jing ,
  • Gong Junwei ,
  • Li Yiju ,
  • Cheng Kui ,
  • Ye Ke ,
  • Zhu Kai ,
  • Yan Jun ,
  • Cao Dianxue ,
  • Wang Guiling
Expand
  • Harbin Engineering University, College of Materials Science and Chemical Engineering, Harbin 150001

Received date: 2017-09-17

  Online published: 2017-12-13

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 51572052, 21503055).

Abstract

Self N-doped porous cross-linked carbon nanosheets (N-ICNs) are prepared by one-step activation carbonization using dandelion seeds. The dandelion seeds are rich in nitrogen without any additional doping treatment, which can be served as an ideal carbon precursor. The microstructure and composition of the prepared carbon materials are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). It can be seen from the SEM and TEM spectra that the N-ICNs exhibit the porous interconnected structure, which can facilitate the transfer of the electrons and the dispersion of the electrolyte ions. Moreover, the XRD spectra show the defects in the amorphous carbon material. Nitrogen adsorption/desorption isotherms of the N-ICNs show a high specific surface area of 1564 m2·g-1, and the pore size distribution shows numerous micropores and macropores, which contributes to the formation of double layer capacitance and the accessibility of the electrolyte ions. The wide-scan spectra present the presence of C, N and O atoms. Interestingly, the N content of the N-ICNs without any extra doping treatment is high (2.88%). Based on the high nitrogen content, the N-ICNs exhibit a good specific capacitance of 337 F·g-1 at a current density of 1 A·g-1 with an excellent capacitance retention of 99% after 10000 cycles. The good electrochemical performances mainly caused by the nitrogen functional groups in the carbon lattice, which can improve the wettability as well as provide pseudocapacitance due to the redox reactions of amine groups. In addition, the symmetric supercapacitor assembled with N-ICNs in the operating voltage range of 0~2 V shows high energy density of 25.3 Wh·kg-1 at the power density of 900 W·kg-1, which are superior than the other carbon materials reported. And the capacitance retention can retain 98% after 10000 cycles. Therefore, the low-cost biomass-derived porous interconnected carbon material can be a promising electrode material for supercapacitors.

Cite this article

Zhao Jing , Gong Junwei , Li Yiju , Cheng Kui , Ye Ke , Zhu Kai , Yan Jun , Cao Dianxue , Wang Guiling . Self N-Doped Porous Interconnected Carbon Nanosheets Material for Supercapacitors[J]. Acta Chimica Sinica, 2018 , 76(2) : 107 -112 . DOI: 10.6023/A17090422

References

[1] Yan, J.; Wang, Q.; Wei, T.; Fan, Z. Adv. Energy Mater. 2014, 4, 157.
[2] Wu, Z.; Li, L.; Yan, J.; Zhang, X. Adv. Sci. 2017, 4, 1600382.
[3] Li, T.; Zhao, J.; Li, Y.; Quan, Z.; Xu, J. Acta Chim. Sinica 2017, 75, 485. (李甜甜, 赵继宽, 李尧, 全贞兰, 徐洁, 化学学报, 2017, 75, 485.)
[4] Jin, Y.; Chen, H.; Chen, M.; Liu, N.; Li, Q. ACS Appl. Mater. Interfaces 2013, 5, 3408.
[5] Su, S.; Lai, Q.; Liang, Y. Acta Chim. Sinica 2015, 73, 735. (苏善金, 来庆学, 梁彦瑜, 化学学报, 2015, 73, 735.)
[6] Hsu, Y. H.; Lai, C. C.; Ho, C. L.; Lo, C. T. Electrochim. Acta 2014, 127, 369.
[7] Davies, A.; Audette, P.; Farrow, B.; Hassan, F.; Chen, Z.; Yu, A. J. Phys. Chem. C 2011, 115, 17612.
[8] Li, Z.; Zhang, L.; Amirkhiz, B. S.; Tan, X.; Xu, Z.; Wang, H.; Olsen, B. C.; Holt, C. M. B.; Mitlin, D. Adv. Energy Mater. 2012, 2, 431.
[9] Chen, W.; Zhang, H.; Huang, Y.; Wang, W. J. Mater. Chem. 2010, 20, 4773.
[10] Liu, D.; Yu, S.; Shen, Y.; Chen, H.; Shen, Z.; Zhao, S.; Fu, S.; Yu, Y.; Bao, B. Ind. Eng. Chem. Res. 2015, 54, 12570.
[11] Hu, Z.; Li, S.; Cheng, P.; Yu, W.; Li, R.; Shao, X.; Lin, W.; Yuan, D. J. Mater. Sci. 2016, 51, 2627.
[12] Dou, S.; Huang, X.; Ma, Z.; Wu, J.; Wang, S. Nanotechnology 2015, 26, 045402.
[13] Wang, C.; Qiu, F.; Deng, H.; Zhang, X.; He, P.; Zhou, H. Acta Chim. Sinica 2017, 75, 241. (王超强, 邱飞龙, 邓瀚, 张晓禹, 何平, 周豪慎, 化学学报, 2017, 75, 241.)
[14] Wan, G.; Fu, Y.; Guo, J.; Xiang, Z. Acta Chim. Sinica 2015, 73, 557. (万刚, 付宇昂, 郭佳宁, 向中华, 化学学报, 2015, 73, 557.)
[15] Dias, A.; Ciminelli, V. S. T. Ferroelectrics 2000, 241, 9.
[16] Xu, J.; He, F.; Gai, S.; Zhang, S.; Li, L.; Yang, P. Nanoscale 2014, 6, 10887.
[17] Bello, A.; Manyala, N.; Barzegar, F.; Khaleed, A. A.; Momodu, D. Y.; Dangbegnon, J. K. RSC Adv. 2016, 6, 1800.
[18] Liu, B.; Zhou, X.; Chen, H.; Liu, Y.; Li, H. Electrochim. Acta 2016, 208, 55.
[19] Rufford, T. E.; Hulicova-Jurcakova, D.; Zhu, Z.; Lu, G. Q.; Electrochem. Commun. 2008, 10, 1594.
[20] Zhong, Y.; Xia, X.; Deng, S.; Zhan, J.; Fang, R.; Xia, Y.; Wang, X.; Zhang, Q.; Tu, J. Adv. Energy Mater. 2017, 201701110.
[21] Cao, H.; Zhou, X.; Qin, Z.; Liu, Z. Carbon 2013, 56, 218.
[22] Yang, J.; Jo, M. R.; Kang, M.; Huh, Y. S.; Jung, H.; Kang, Y.-M. Carbon 2014, 73, 106.
[23] Zhao, L.; Fan, L. Z.; Zhou, M. Q.; Guan, H.; Qiao, S.; Antonietti, M.; Titirici, M. M. Adv. Mater. 2010, 22, 5202.
[24] Long, C.; Chen, X.; Jiang, L.; Zhi, L.; Fan, Z. Nano Energy 2015, 12, 141.
[25] Jiang, L.; Sheng, L.; Long, C.; Fan, Z. Nano Energy 2015, 11, 471.
[26] Xu, X.; Wang, M.; Liu, Y.; Li, Y.; Lu, T.; Pan, L. Energy Storage Mater. 2016, 5, 132.
[27] Raymundo-Pinero, E.; Cadek, M.; Beguin, F. Adv. Funct. Mater. 2009, 19, 1032.
[28] Feng, H.; Hu, H.; Dong, H.; Xiao, Y.; Cai, Y.; Lei, B.; Liu, Y.; Zheng, M. J. Power Sources 2016, 302, 164.
[29] Liu, C.; Wang, J.; Li, J.; Zeng, M.; Luo, R.; Shen, J.; Sun, X.; Han, W.; Wang, L. ACS Appl. Mater. Interfaces 2016, 8, 7194.
[30] Xing, W.; Qiao, S. Z.; Ding, R. G.; Li, F.; Lu, G. Q.; Yan, Z. F.; Cheng, H. M. Carbon 2016, 44, 216.
[31] Ling, Z.; Wang, Z.; Zhang, M.; Yu, C.; Wang, G.; Dong, Y.; Liu, S.; Wang, Y.; Qiu, J. Adv. Funct. Mater. 2016, 26, 111.

Outlines

/