Template-Assisted Preparation and Lithium Storage Performance of Nitrogen Doped Porous Carbon Sheets
Received date: 2017-09-18
Online published: 2018-01-22
Supported by
Project supported by the National Natural Science Foundation of China (No. 21563029) and the Natural Science Foundation of Xinjiang Uygur Autonomous Region (No. 2014211A015).
Nitrogen doped porous carbon sheets (NPCSs) having high lithium storage performance were successfully prepared by a template-assisted approach using magnesium oxide/melamine/polyethylene glycol (MgO/melamine/PEG) as raw materials. In a typical procedure, the precursor, which consisted of MgO, melamine and PEG in a mass ratio of 7:3:10, was carbonized at 700℃ for 3 h in a temperature-programmed tubular furnace under N2 flow with a heating rate of 5℃·min-1. The intermediate was immersed into 3 mol·L-1 HCl solution for several times to remove MgO. Subsequently, the sample was rinsed with water and ethanol until a neutral pH was obtained, and then dried at 80℃ in a vacuum oven. The sample was systematically characterized and analyzed by Fourier transform infrared spectrometer (FTIR), X-ray powder diffractometer (XRD), X-ray photoelectron spectrometer (XPS), scanning electron microscope (SEM), transmission electron microscope (TEM), cyclic voltammetry (CV), galvanostatic charge/discharge (GCD) and electrochemical impedance spectroscopy (EIS). The results indicated that NPCSs showed an interconnected porous carbon sheet networks, showing relatively high specific surface area (370.8 m2·g-1), hierarchical pore channels, and high nitrogen content (8.5 at%). Such a continuous porous structure could enhance the electron transport on three-dimensional direction, shorten the diffusion distance of lithium ions, enlarge the interface area between lithium ion and electrolyte, and provide the place for the accommodation of lithium ions. Additionally, high N-doping level in NPCSs could provide numerous activated sites for the intercalation and deintercalation of lithium ions, and enhance the electronic conductivity. Based on the unique structure, NPCSs electrode could exhibit high initial reversible specific capacities (after excluding the contribution of acetylene black, 914 mAh·g-1 at 100 mA·g-1) and good cycling stability (still remaining a specific capacity of 523 mAh·g-1 at 1000 mA·g-1 up to 300 cycles). Moreover, NPCSs displayed high rate capability with a reversible capacity of 355 mAh·g-1 at a current density of 3000 mA·g-1. Therefore, the NPCSs obtained are expectable to be widely used as anode material in lithium-ion batteries.
Li Zhiwei , Zhong Jialiang , Chen Nannan , Xue Bing , Mi Hongyu . Template-Assisted Preparation and Lithium Storage Performance of Nitrogen Doped Porous Carbon Sheets[J]. Acta Chimica Sinica, 2018 , 76(3) : 209 -214 . DOI: 10.6023/A17090425
[1] Dunn, B.; Kamath, H.; Tarascon, J. M. Science 2011, 334, 928.
[2] Yoshino, A. Angew. Chem. Int. Ed. 2012, 51, 5798.
[3] Zheng, Z.; Wu, Z. G.; Xiang, W.; Guo, X. D. Acta Chim. Sinica 2017, 75, 501. (郑卓, 吴振国, 向伟, 郭孝东, 化学学报, 2017, 75, 501.)
[4] Lv, Z. Y.; Feng, R.; Zhao, J.; Fan, H.; Xu, D.; Wu, Q.; Yang, L. J.; Chen, Q.; Wang, X. Z.; Hu, Z. Acta Chim. Sinica 2015, 73, 1013. (吕之阳, 冯瑞, 赵进, 范豪, 徐丹, 吴强, 杨立军, 陈强, 王喜章, 胡征, 化学学报, 2015, 73, 1013.)
[5] Palacín, M. R. Chem. Soc. Rev. 2009, 38, 2565.
[6] Li, H.; Wang, Z. X.; Chen, L. Q.; Huang, X. J. Adv. Mater. 2009, 21, 4593.
[7] Xu, Y. X.; Lin, Z. Y.; Zhong, X.; Papandrea, B.; Huang, Y.; Duan, X. F. Angew. Chem., Int. Ed. 2015, 54, 5345.
[8] Ou, J. K.; Zhang, Y. Z.; Chen, L.; Zhao, Q.; Meng, Y.; Guo, Y.; Xiao, D. J. Mater. Chem. A 2015, 3, 6534.
[9] Du, J.; Lin, N.; Qian, Y. T. Acta Chim. Sinica 2017, 75, 147. (杜进,林宁, 钱逸泰, 化学学报, 2017, 75, 147.)
[10] Zhang, N.; Zhao, Q.; Han, X. P.; Yang, J. G.; Chen, J. Nanoscale 2014, 6, 2827.
[11] Zhu, X.; Ning, G. Q.; Ma, X. L.; Fan, Z. J.; Xu, C. G.; Gao, J. S.; Xu, C. M.; Wei, F. J. Mater. Chem. A 2013, 1, 14023.
[12] Etacheri, V.; Haik, O.; Goffer, Y.; Roberts, G. A.; Stefan, I. C.; Fasching, R.; Aurbach, D. Langmuir 2012, 28, 965.
[13] Nan, D.; Huang, Z. Y.; Kang, F. Y.; Shen, W. C. New Carbon Materials 2016, 31, 393. (楠顶, 黄正宏, 康飞宇, 沈万慈, 新型炭材料, 2016, 31, 393.)
[14] Bulusheva, L. G.; Arkhipov, V. E.; Fedorovskaya, E. O.; Zhang, S.; Kurenya, A. G.; Kanygin, M. A.; Asanov, I. P.; Tsygankova, A. R.; Chen, X. H.; Song, H. H.; Okotrub, A. V. J. Power Sources 2016, 311, 42.
[15] Wen, L.; Liu, C. M.; Song, R. S.; Luo, H. Z.; Shi, Y.; Li, F.; Chen, H. M. Acta Chim. Sinica 2014, 72, 333. (闻雷, 刘成名, 宋仁升, 罗洪泽, 石颖, 李峰, 成会明, 化学学报, 2014, 72, 333.)
[16] Chen, M.; Yu, C.; Liu, S. H.; Fan, X. M.; Zhao, C. T.; Zhang, X.; Qiu, J. S. Nanoscale 2015, 7, 1791.
[17] Zhang, L. J.; Xia, G. L.; Guo, Z. P.; Sun, D. L.; Li, X. G.; Yu, X. B. J. Power Sources 2016, 324, 294.
[18] Li, D. D.; Ding, L. X.; Chen, H. B.; Wang, S. Q.; Li, Z.; Zhu, M.; Wang, H. H. J. Mater. Chem. A 2014, 2, 16617.
[19] Roberts, A. D.; Wang, S. X.; Li, X.; Zhang, H. F. J. Mater. Chem. A 2014, 2, 17787.
[20] Akiyama, T.; Zhu, C. Y. Green Chem. 2016, 18, 2106.
[21] Wang, C. Y.; Feng, L. L.; Li, W.; Zheng, J.; Tian, W. H.; Li, X. G. Solar Energy Mater. Solar Cells 2012, 105, 21.
[22] Zhong, J. L.; Guo, F. J.; Mi, H. Y. Chinese J. Inorg. Chem. 2015, 31, 2128. (仲佳亮, 郭凤娇, 米红宇, 无机化学学报, 2015, 31, 2128.)
[23] Zhang, X. J.; Zhu, G.; Wang, M.; Li, J. B.; Lu, T.; Pan, L. K. Carbon 2017, 116, 686.
[24] Guo, N. N.; Li, M.; Wang, H.; Sun, X. K.; Wang, F.; Yang, R. RSC Adv. 2016, 6, 101372.
[25] Pumera, M. Energy Environ. Sci. 2011, 4, 668.
[26] You, L. J.; Zhang, Y. T.; Xu, S.; Guo, J.; Wang, C. C. ACS Appl. Mater. Interfaces 2014, 6, 15179.
[27] Huang, C. W.; Wu, Y. T.; Hu, C. C.; Li, Y. Y. J. Power Sources 2007, 172, 460.
[28] Wang, S. X.; Chen, S. L.; Wei, Q. L.; Zhang, X. K.; Wong, S. Y.; Sun, S. H.; Li, X. Chem. Mater. 2015, 27, 336.
[29] Jeong, H. M.; Lee, J. W.; Shin, W. H.; Choi, Y. J.; Shin, H. J.; Kang, J. K.; Choi, J. W. Nano Lett. 2011, 11, 2472.
[30] Li, Z.; Xu, Z. W.; Tan, X. H.; Wang, H. L.; Holt, C. M. B.; Stephenson, T.; Olsen, B. C.; Mitlin, D. Energy Environ. Sci. 2013, 6, 871.
[31] Wang, H. G.; Wang, Y. H.; Li, Y. H.; Wan, Y. C.; Duan, Q. Carbon 2015, 82, 116.
[32] Sui, Z. Y.; Wang, C. Y.; Yang, Q. S.; Shu, K. W.; Liu, Y. W.; Han, B. H.; Wallace, G. G. J. Mater. Chem. A 2015, 3, 18229.
[33] Chang, K.; Chen, W. X. ACS Nano 2011, 5, 4720.
[34] Etacheri, V.; Hong, C. N.; Pol, V. G. Environ. Sci. Technol. 2015, 49, 11191.
[35] Zhu, C. Y.; Akiyama, T. Green Chem. 2015, 18, 2106.
[36] Song, R.; Song, H. H.; Zhou, J. S.; Chen, X. T.; Wu, B.; Yang, H. Y. J. Mater. Chem. 2012, 22, 12369.
[37] Ou, J. K.; Yang, L.; Zhang, Y. Z.; Chen, L.; Guo, Y.; Xiao, D. Chinese J. Chem. 2015, 33, 1293.
[38] Qie, L.; Chen, W. M.; Wang, Z. H.; Shao, Q. G.; Li, X.; Yuan, L. X.; Hu, X. L.; Zhang, W. X.; Huang, Y. H. Adv. Mater. 2012, 24, 2047.
[39] He, B.; Li, W. C.; Lu, A. H. J. Mater. Chem. A 2015, 3, 579.
[40] Zhang, W. L.; Yin, J.; Lin, Z. Q.; Lin, H. B.; Lu, H. Y.; Wang, Y.; Huang, W. M. Electrochim. Acta 2015, 176, 1136.
/
〈 |
|
〉 |