Accounts

Research Progress of High-performance Multi-analyte Recognitions and Multivariate Analysis

  • Ye Changqing ,
  • Chen Shuoran ,
  • Li Fengyu ,
  • Ge Jie ,
  • Yong Peiyi ,
  • Qin Meng ,
  • Song Yanlin
Expand
  • a Research Center for Green Printing Nanophotonic Materials, Suzhou University of Science and Technology, Jiangsu Key Laboratory for Environmental Functional Materials, Suzhou 215009;
    b Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190

Received date: 2017-12-26

  Online published: 2018-02-26

Supported by

Project supported by Natural Science Foundation of Jiangsu Province-Excellent Youth Foundation (No. BK20170065), Natural Science Foundation of Jiangsu Province (No. BK20160358), Natural Science Foundation of the Higher Education Institutions of Jiangsu Province (No. 17KJA430016), Six Talent Summits Project of Jiangsu Province (No.XCL-79), Qing Lan Project, the National Natural Science Foundation of China (Nos. 51603141, 51473172, 51473173) and the "Strategic Priority Research Program" of Chinese Academy of Sciences (No. XDA09020000).

Abstract

The traditional "lock and key" sensor models pursue the "one to one" sensing response for the specific testing and the low limitation of detection, which neglect the practical sample detecting application with multi-analytes and complex contains. Utilizing multi-sensor compounds, the sensor array chip offers multiplex differential sensing response signal to process the multi-analytes discrimination. The critical requirement for successful multi-analyte recognition is to acquire abundant sensing information. However, the "multi to multi" sensor chip needs large numbers of serial probe compounds, which involve com-plicated chemical synthesis and valid compound screening. Inspired by the human sense organ, scientists developed various "cross-reactive" sensor arrays. Here, The recent research progress of multi-analysis and "one to multi" high-efficient detection were introduced. From chemical information excavation, physical signal enhancement, devices integration design, we summarize and forecast the multi-analysis advancement and intelligent sensors.

Cite this article

Ye Changqing , Chen Shuoran , Li Fengyu , Ge Jie , Yong Peiyi , Qin Meng , Song Yanlin . Research Progress of High-performance Multi-analyte Recognitions and Multivariate Analysis[J]. Acta Chimica Sinica, 2018 , 76(4) : 237 -245 . DOI: 10.6023/A17120555

References

[1] Albert, K. J.; Lewis, N. S.; Schauer, C. L.; Sotzing, G. A.; Stitzel, S. E.; Vaid, T. P.; Walt, D. R. Chem. Rev. 2000, 100, 2595.
[2] Gardner, J. W.; Bartlett, P. N. Electronic Noses:Principles and Applications, Oxford University Press, Oxford, 1999, p. 245.
[3] Taruno, A.; Vingtdeux, V.; Ohmoto, M.; Ma, Z. Nature 2013, 495, 223.
[4] Persaud, K.; Dodd, G. Nature 1982, 299, 352.
[5] Stears, R. L.; Martinsky, T.; Schena, M. Nat. Med. 2003, 9, 140.
[6] Wright, A. T.; Anslyn, E. V. Chem. Soc. Rev. 2006, 35, 14.
[7] Lavigne, J. J.; Anslyn, E. V. Angew. Chem., Int. Ed. 2001, 40, 3118.
[8] Palacios, M. A.; Nishiyabu, R.; Marquez, M.; Anzenbacher, P. J. Am. Chem. Soc. 2007, 129, 7538.
[9] Rakow, N. A.; Suslick, K. S. Nature 2000, 406, 710.
[10] Folmer-Andersen, J. F.; Kitamura, M.; Anslyn, E. V. J. Am. Chem. Soc. 2006, 128, 5652.
[11] Wu, Y.-Y.; Na, N.; Zhang, S.-C.; Wang, X.; Liu, D.; Zhang, X.-R. Anal. Chem. 2009, 81, 961.
[12] Han, M.; Gao, X.; Su, J.; Nie, S. Nat. Biotechnol. 2001, 19, 631.
[13] Rout, B.; Unger, L.; Armony, G.; Iron, M. A.; Margulies, D. Angew. Chem., Int. Ed. 2012, 51, 12477.
[14] You, C. C.; Miranda, O. R.; Gider, B.; Ghosh, P. S.; Kim, I. B.; Erdogan, B.; Krovi, S. A.; Bunz, U. H. F.; Rotello, V. M. Nat. Nanotechnol. 2007, 2, 318.
[15] Palacios, M. A.; Wang, Z.; Montes, V. A. J. Am. Chem. Soc. 2008, 130, 10307.
[16] Rout, B.; Unger, L.; Armony, G. Angew. Chem., Int. Ed. 2012, 51, 12477.
[17] Kim, J.; Wu, X.; Herman, M. R. Anal. Chim. Acta 1998, 370, 251.
[18] Wang, Z.; Palacios, M. A.; Anzenbacher, P. Anal. Chem. 2008, 80, 7451.
[19] Huang, Y.; Li, F.; Qin, M. Angew. Chem., Int. Ed. 2013, 52, 7296.
[20] Anzenbacher, P.; Lubal, P.; Bucek, P. Chem. Soc. Rev. 2010, 39, 3954.
[21] Smyth, H.; Cozzolino, D. Chem. Rev. 2012, 113, 1429.
[22] Irie, M. Chem. Rev. 2000, 100, 1685.
[23] Wang, S.; Shen, W.; Feng, Y.-L.; Tian, H. Chem. Commun. 2006, 14, 1497.
[24] Jiang, G.-Y.; Wang, S.; Yuan, W.-F.; Zhao, Z.; Duan, A.-J.; Xu, C.-M.; Jiang, L.; Song, Y.-L. Eur. J. Org. Chem. 2007, 2007, 2064.
[25] Kopelman, R. A.; Snyder, S. M.; Frank, N. L. J. Am. Chem. Soc. 2003, 125, 13684.
[26] Wagner, K.; Byrne, R.; Zanoni, M. J. Am. Chem. Soc. 2011, 133, 5453.
[27] Huang, Y.; Li, F.-Y.; Ye, C.-Q.; Qin, M.; Ran, W.; Song, Y.-L. Sci. Rep. 2015, 5, 9724.
[28] Fischer, E.; Hirshberg, Y. J. Chem. Soc. 1952, 868, 4522.
[29] Fries, K. H.; Driskell, J. D.; Samanta, S.; Locklin, J. Anal. Chem. 2010, 82, 3306.
[30] Rusin, O.; St. Luce, N. N.; Agbaria, R. A. J. Am. Chem. Soc. 2004, 126, 438.
[31] Wang, W.; Rusin, O.; Xu, X.; Kim, K. K.; Escobedo, J. O.; Fa-kayode, S. O.; Fletcher, K. A.; Lowry, M.; Schowalter, C. M.; Lawrence, C. M.; Fronczek, F. R.; Warner, I. M.; Strongin, R. M. J. Am. Chem. Soc. 2005, 127, 15949.
[32] Yang, X.; Guo, Y.; Strongin, R. M. Angew. Chem., Int. Ed. 2011, 50, 10690.
[33] Zhang, M.; Yu, M.-X.; Li, F.-Y.; Zhu, M.-W.; Li, M.-Y.; Gao, Y.-H.; Li, L.; Liu, Z.-Q.; Zhang, J.-P.; Zhang, D.-P.; Yi, T.; Huang, C.-H. J. Am. Chem. Soc. 2007, 129, 10322.
[34] Jung, H. S.; Pradhan, T.; Han, J. H.; Heo, K. J.; Lee, J. H.; Kang, C.; Kim, J. S. Biomaterials 2012, 33, 8495.
[35] Aït-Haddou, H.; Wiskur, S. L.; Lynch, V. M.; Anslyn, E. V. J. Am. Chem. Soc. 2001, 123, 11296.
[36] Hortala, M. A.; Fabbrizzi, L.; Marcotte, N.; Stomeo, F.; Taglietti, A. J. Am. Chem. Soc. 2003, 125, 20.
[37] Kong, H.; Liu, D.; Zhang, S.-C.; Zhang, X.-R. Anal. Chem. 2011, 83, 1867.
[38] Rochat, S.; Gao, J.; Qian, X.; Zaubitzer, F.; Severin, K. Chem. Eur. J. 2010, 16, 104.
[39] Zhou, Y.; Yoon, J. Chem. Soc. Rev. 2012, 41, 52.
[40] Greene, N. T.; Shimizu, K. D. J. Am. Chem. Soc. 2005, 127, 5695.
[41] Pavel, A.; Li, F.-Y.; Palacios, M. A. Angew. Chem., Int. Ed. 2012, 51, 2345.
[42] Dean, K. E. S.; Klein, G.; Renaudet, O.; Reymond, J.-L. Bioorg. Med. Chem. Lett. 2003, 13, 1653.
[43] Xu, X.; Goponenko, A. V.; Asher, S. A. J. Am. Chem. Soc. 2008, 130, 3113.
[44] Pathak, R. K.; Dessingou, J.; Rao, C. P. Anal. Chem. 2012, 84, 8294.
[45] Qin, M.; Li, F.-Y.; Huang, Y.; Ran, W.; Han, D.; Song, Y.-L. Anal. Chem. 2014, 87, 837.
[46] Kopelman, R. A.; Snyder, S. M.; Frank, N. L. J. Am. Chem. Soc. 2003, 125, 13684.
[47] Yablonovitch, E. Phys. Rev. Lett. 1987, 58, 2059.
[48] John, S. Phys. Rev. Lett. 1987, 58, 2486.
[49] Burgess, I. B.; Mishchenko, L.; Hatton, B. D.; Kolle, M.; Loncar, M.; Aizenberg, J. J. Am. Chem. Soc. 2011, 133, 12430.
[50] Chen, J. I. L.; Von Freymann, G.; Choi, S. Y.; Kitaev, V.; Ozin, G. A. Adv. Mater. 2006, 18, 1915.
[51] Mihi, A.; Zhang, C.; Braun, P. V. Angew. Chem., Int. Ed. 2011, 50, 5712.
[52] Ward, A. J.; Pendry, J. B. Phys. Rev. B 1998, 58, 7252.
[53] John, S.; Quang, T. Phys. Rev. A 1994, 50, 1764.
[54] Thijssen, M. S.; Sprik, R.; Wijnhoven, J. E. G. J.; Megens, M.; Narayanan, T.; Lagendijk, A.; Vos, W. L. Phys. Rev. Lett. 1999, 83, 2730.
[55] Bardez, E.; Devol, I.; Larrey, B.; Valeur, B. J. Phys. Chem. B 1997, 101, 7786.
[56] Qin, M.; Huang, Y.; Li, Y.-N.; Su, M.; Chen, B.-D.; Sun, H.; Yong, P.-Y.; Ye, C.-Q.; Li, F.-Y.; Song, Y.-L. Angew. Chem., Int. Ed. 2016, 55, 6911.
[57] Bonifacio, L. D.; Puzzo, D. P.; Breslav, S.; Willey, B. M.; McGeer, A.; Ozin, G. A. Adv. Mater. 2010, 22, 1351.
[58] Xie, Z.; Cao, K.; Zhao, Y.; Bai, L.; Gu, H.; Xu, H.; Gu, Z.-Z. Adv. Mater. 2014, 26, 2413.
[59] Hu, X.-B.; Huang, J.; Zhang, W.-X.; Li, M.-H.; Tao, C.-G.; Li, G.-T. Adv. Mater. 2008, 20, 4074.
[60] Cui, J.-C.; Zhu, W.; Gao, N.; Li, J.; Yang, H.-W.; Jiang, Y.; Seidel, P.; Ravoo, B. J.; Li, G.-T. Angew. Chem., Int. Ed. 2014, 53, 3844
[61] Cui, J.-C.; Gao, N.; Wang, C.; Zhu, W.; Li, J.; Wang, H.; Seidel, P.; Ravoo, B. J.; Li, G.-T. Nanoscale 2014, 6, 11995.
[62] Zhang, Y.-Q.; Fu, Q.-Q.; Ge, J.-P. Nat. Commun. 2015, 6, 7510.
[63] Kim, F. S.; Ren, G.; Jenekhe, S. A. Chem. Mater. 2010, 23, 682.
[64] Ding, B.; Wang, M.-R.; Wang, X.-F.; Yu, J.-Y.; Sun, G. Mater. Today 2010, 13, 16.
[65] Lipomi, D. J.; Vosgueritchian, M.; Tee, B. C.-K.; Hellstrom, S. L.; Lee, J. A.; Fox, C. H.; Bao, Z.-N. Nat. Nanotechnol. 2011, 6, 788.
[66] Li, Y.-D.; Li, Y.-N.; Su, M.; Li, W.-B.; Li, Y.-F.; Li, H.-Z.; Qian, X.; Zhang, X.-Y.; Li, F.-Y.; Song, Y.-L. Adv. Electron. Mater. 2017, 3, 1700253.
[67] Shen, W.-Z.; Li, M.-Z.; Ye, C.-Q.; Jiang, L.; Song, Y.-L. Lab. Chip. 2012, 12, 3089.
[68] Hou, J.; Zhang, H.-C.; Yang, Q.; Li, M.-Z.; Song, Y.-L.; Jiang, L. Angew. Chem., Int. Ed. 2014, 53, 5791.
[69] Hou, J.; Zhang, H.-C.; Yang, Q.; Li, M.-Z.; Jiang, L.; Song, Y.-L. Small 2015, 11, 2738.
[70] Maheshwari, V.; Saraf, R. F. Science 2006, 312, 1501.
[71] Windmiller, J. R.; Wang, J. Electroanalysis 2013, 25, 29.
[72] Su, M.; Li, F.-Y.; Chen, S.-R.; Huang, Z.-D.; Qin, M.; Li, W.-B.; Zhang, X.-Y.; Song, Y.-L. Adv. Mater. 2016, 28, 1369.
Outlines

/