Total Synthesis of Dammarane-Type Saponins Ginsenoside Re and Notoginsenoside R1
Received date: 2017-12-18
Online published: 2018-03-09
Supported by
Project supported by the National Natural Science Foundation of China (Nos. 21432012, 21621002), the Strategic Priority Research Program of CAS (No. XDB20020000), Youth Innovation Promotion Association of CAS (No. 2017300) and the K. C. Wong Education Foundation.
Ginsenoside Re (1) and Notoginsenoside R1 (2) are two representative dammarane type protopanaxatriol-6,20-O-bisglycosides occurring widely founded in Panaxginseng. Ginsenoside Re (1) showed potent antioxidative, anti-inflammatory and antihyperlipemia activities, and Notoginsenoside R1 (2) showed potent antioxidative and antiinflammatory activities, so it would be helpful to synthesize these homogeneous natural products in appreciable amounts by accelerating their structure-activity relationship study. As a persistent effort on the chemical syntheses of the diverse ginsenosides in our group, we report herein the efficient syntheses of these two complex natural products. Thus, based on the reactivity sequence of the four hydroxyl groups (i.e., 12-OH > 3-OH > 6-OH >> 20-OH) of the protopanaxatriol aglycon, an orthogonal and efficient protecting group strategy was applied to distinguish these hydroxyl groups. The subsequent installation of the 6,20-O-bisglycosides are challenging, given the poor reactivity of the secondary 6-OH and tertiary 20-OH, moreover, with the latter being labile toward acidic conditions. Taking advantage of the neutral conditions of the Au(I)-catalyzed glycosylation reaction (0.3 equiv. Ph3PAuNTf2, 4 Å MS, CH2Cl2, r.t.), the glycosylation of the acid-labile 20-hydroxyl group was achieved effectively in a high 84% yield firstly. To be convergent for the syntheses of these two ginsenosides, the 6-O-disaccharide residues were installed in a stepwise manner. For the glycosylation of the 6-OH of protopanaxatriol, a higher loading of the catalyst Ph3PAuNTf2 (0.5 equiv.) was employed in order to increase the glycosylation yield while reduce the orthoester formation, thus, the desired 6β-O-glucosides were prepared in satisfactory yields (77%~83%). Both terminal α-L-Rha/β-D-Xyl moieties at the 2' position of 6-O-glc were installed efficiently under 0.2 equiv. Ph3PAuNTf2 catalyzing condition (ClCH2CH2Cl, 5 Å MS, 40℃) with 86% and 81% yields, respectively. After global deprotection, Ginsenoside Re (1) and Notoginsenoside R1 (2) were synthesized with the longest 13 linear steps in 5.1% and 4.5% overall yields, respectively.
Shen Renzeng , Cao Xin , Yu Biao . Total Synthesis of Dammarane-Type Saponins Ginsenoside Re and Notoginsenoside R1[J]. Acta Chimica Sinica, 2018 , 76(4) : 278 -285 . DOI: 10.6023/A17120544
[1] (a) Sticher, O. Chemtech. 1998, 4, 26;
(b) Liu, Z. Q. Chem. Rev. 2012, 112, 3329;
(c) Park, J. D.; Rhee, D. K.; Lee, Y. H. Phytochem. Rev. 2005, 4, 159;
(d) Christensen, L. P. Adv. Food Nutr. Res. 2009, 55, 1.
[2] (a) Atopkina, L. N.; Denisenko, V. A.; Uvarova, N. I.; Elyakov, G. B. Carbohydr. Res. 1988, 177, 101;
(b) Atopkina, L. N.; Uvarova, N. I.; Elyakov, G. B. Carbohydr. Res. 1997, 303, 449;
(c) Anufriev, V. P.; Malinovskaya, G. V.; Denisenko, V. A.; Uvarova, N. I.; Elyakov, G. B.; Kim, S. I. I.; Beak, N. I. Carbohydr. Res. 1997, 304, 179;
(d) Xu, Y. R.; Wang, W. Z.; Yang, J. J.; Li, X. L.; Meng, Q. G. Chin. J. Org. Chem. 2016, 36, 724(徐阳荣, 王文智, 杨静静, 李新利, 孟庆国, 有机化学, 2016, 36, 724.)
(e) Yang, G. Q.; Li, Y.; Yang, Q.; Yue, X.; Yao, L.; Jiang, Y. T. Chin. J. Org. Chem. 2017, 37, 1530(杨刚强, 李阳, 杨青, 岳馨, 姚雷, 姜永涛, 有机化学, 2017, 37, 1530).
[3] (a) Peng, W.; Sun, J.; Lin, F.; Han, X.; Yu, B. Synlett 2004, 2, 259;
(b) Liao, J.; Sun, J.; Niu, Y.; Yu, B. Tetrahedron Lett. 2011, 52, 3075;
(c) Shen, R.; Cao, X.; Laval, S.; Sun, J.; Yu, B. J. Org. Chem. 2016, 81, 10279;
(d) Shen, R.; Laval, S.; Cao, X.; Yu, B. J. Org. Chem. 2018, DOI:10.1021/acs.joc.7b02987.
[4] (a) Li, Y.; Yang, Y.; Yu, B. Tetrahedron Lett. 2008, 49, 3604;
(b) Li, Y.; Yang, X.; Liu, Y.; Zhu, C.; Yang, Y.; Yu, B. Chem. Eur. J. 2010, 16, 1871;
(c) Zhu, Y.; Yu, B. Angew. Chem., Int. Ed. 2011, 50, 8329;
(d) Tang, Y.; Li, J.; Zhu, Y.; Li, Y.; Yu, B. J. Am. Chem. Soc. 2013, 135, 18396;
(e) Yu, B. Acc. Chem. Res. 2018, 51, 507.
[5] Yu, J.; Sun, J.; Niu, Y.; Li, R.; Liao, J.; Zhang, F.; Yu, B. Chem. Sci. 2013, 4, 3899.
[6] (a) Zhou, J.; Wu, M. Z.; Taniyasu, S.; Besso, H.; Tanaka, O.; Saruwatari, Y.; Fuwa, T. Chem. Pharm. Bull. 1981, 29, 2844;
(b) Matsuura, H.; Kasai, R.; Tanaka, O.; Saruwatari, Y.; Fuwa, T.; Zhou, J. Chem. Pharm. Bull. 1983, 31, 2281.
[7] (a) Morita, T.; Kong, Y. C.; But, P. P. H.; Ng, K. H.; Yip, T. T.; Kasai, R.; Tanaka, O. Chem. Pharm. Bull. 1986, 34, 4368;
(b) Kim, D. S.; Chang, Y. J.; Zedk, U.; Zhao, P.; Liu, Y. Q.; Yang, C. R. Phytochemistry 1995, 40, 1493;
(c) Teng, R.; Li, H.; Chen, J.; Wang, D.; He, Y.; Yang, C. Magn. Reson. Chem. 2002, 40, 483.
[8] (a) Cho, W. C. S.; Chung, W. S.; Lee, S. K. W.; Leung, A. W. N.; Cheng, C. H. K.; Yue, K. K. M. Eur. J. Pharmacol. 2006, 550, 173;
(b) Fernaandez-Moriano, C.; Gonzaalez-Burgos, E.; Iglesias, I.; Lozano, R.; Gomez-Serranillos, M. P. Plos One 2017, 12, e0182933.
[9] (a) Zhang, J.; Ding, L.; Wang, B.; Ren, G.; Sun, A.; Deng, C.; Wei, X.; Mani, S.; Wang, Z.; Dou, W. J. Pharmacol. Exp. Ther. 2015, 352, 315;
(b) Su, P.; Du, S.; Li, H.; Li, Z.; Xin, W.; Zhang, W. Eur. J. Pharmacol. 2016, 770, 9.
[10] (a) Yang, Y.; Zhang, X.; Yu, B. Nat. Prod. Rep. 2015, 32, 1331;
(b) Yu, B.; Sun, J.; Yang, X. Acc. Chem. Res. 2012, 45, 1227;
(c) Zu, L. N.; Zhao, Y. S.; Gu, G. F. J. Carbohydr. Chem. 2014, 33, 269;
(d) Cheng, S. H.; Du, Y. G.; Bing, F. H.; Zhang, G. B. Carbohydr. Res. 2008, 343, 462.
[11] Yang, W.; Sun, J.; Yang, Z.; Han, W.; Zhang, W.; Yu, B. Tetrahedron Lett. 2012, 53, 2773.
[12] Sun, J.; Han, X.; Yu, B. Synlett 2005, 3, 437.
[13] Liu, T.; Liao, J.; Hu, Y.; Tu, Y.; Sun, J. J. Org. Chem. 2017, 82, 4170.
/
〈 |
|
〉 |