Recent Advances in Cobalt Catalyzed Isocyanide Coupling Reactions
Received date: 2018-01-16
Online published: 2018-03-12
Supported by
Project supported by the National Natural Science Foundation of China (Nos. 21772137, 21672157, 21372174), the Major Basic Research Project of the Natural Science Foundation of the Jiangsu Higher Education Institutions (No. 16KJA150002), Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and Soochow University for financial support, and State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials.
Isocyanide is an important reactive reactant containing stable divalent carbon atoms, which has been widely used in the construction of nitrogen compounds, new drugs and natural products. During the past decades, exhaustive efforts have been devoted to the discovery of highly efficient reactions involving isocyanide on the basis of the development of the Passerini and Ugi reactions. Several types of reactions involving isocyanides have been reported, such as nucleophilic attack, electrophilic addition, imidoylation reactions, and oxidation, etc. Recently, isocyanides have found a new application as versatile C1 building blocks in transition metal catalysis. The transition metal catalyzed reactions involving isocyanide insertion offer a vast potential to construct C—C or C-N bonds for the synthesis of nitrogen-containing fine chemicals. As we know, the catalysts used in isocyanide insertion reactions are mainly concentrated in some valuable transition metals compounds, such as Pd, Rh, Ag and other metals. Therefore, the development of catalysts based on the naturally more abundant, cost efficient transition metal complexes, represents an attractive alternative. In this context, rather environmentally benign cobalt complexes bear great potential for applications in the coupling reactions. The reduced electronegativity of cobalt as compared to the homologous group 9 elements translates into more nucleophilic organometallic cobalt intermediates which allow for unprecedented reaction pathways in transition-metal catalyzed C—H activations as well as significantly improved positional and chemo-selectivities. And in the recent years, notable success has been achieved with the development of cobalt catalyzed C—H functionalizations with either in situ generated or single-component cobalt-complexes under mild reaction conditions. How to find and use the cost efficient cobalt-complexes to catalyze the isocyanide coupling reaction is of great significance. Our group has been devoted to explore the isocyanide chemistry, and in recent years, we have achieved several progresses in the reaction of cobalt-catalyzed isocyanides. In this review we summarize the recent advances in the cobalt-catalyzed isocyanide coupling reactions.
Gu Zhengyang , Ji Shunjun . Recent Advances in Cobalt Catalyzed Isocyanide Coupling Reactions[J]. Acta Chimica Sinica, 2018 , 76(5) : 347 -356 . DOI: 10.6023/A18010023
[1] Lieke, W. Ann. Chem. Pharm. 1859, 112, 316.
[2] Scheuer, P. J. Acc. Chem. Res. 1992, 25, 433.
[3] Passerini, M. Gazz. Chim. Ital. 1921, 51, 126.
[4] Ugi, I.; Mey, R.; Fetzer, U.; Steinbruckner, C. Angew. Chem. 1959, 71, 386.
[5] Groebke, K.; Weber, L.; Mehlin, F. Synlett 1998, 661.
[6] Recent development of the Passerini and Ugi reactions, see selected reviews:
(a) Dömling, A.; Ugi, I. Angew. Chem., Int. Ed. 2000, 39, 3168;
(b) Zhu, J. Eur. J. Org. Chem. 2003, 1133;
(c) Dömling, A. Chem. Rev. 2006, 106, 17;
(d) Ruijter, E.; Scheffelaar, R.; Orru, R. V. A. Angew. Chem., Int. Ed. 2011, 50, 6234.
(e) Sadjadi, S.; Heravi, M. M. Tetrahedron 2011, 67, 2707;
(f) Dömling, A.; Wang, W.; Wang, K. Chem. Rev. 2012, 112, 3083.
[7] (a) Liao, J.-Y.; Shao, P.-L.; Zhao, Y. J. Am. Chem. Soc. 2015, 137, 628.
(b) Kobiki, Y.; Kawaguchi, S.; Ogawa, A. Org. Lett. 2015, 17, 3490.
(c) Zhang, Z.; Li, Z.-Y.; Fu, B.; Zhang, Z.-H. Chem. Commun. 2015, 51, 16312.
(d) Zhang, Z.; Huang, B.-L.; Qiao, G.-Y.; Zhu, L.; Xiao, F.; Chen, F.; Fu, B.; Zhang, Z.-H. Angew. Chem. Int. Ed. 2017, 56, 1.
[8] (a) Saluste, C. G.; Whitby, R. J.; Furber, M. Angew. Chem. Int. Ed. 2000, 39, 4156;
(b) Saluste, C. G.; Whitby, R. J.; Furber, M. Tetrahedron Lett. 2001, 42, 6191;
(c) Tetala, K. K. R.; Whitby, R. J.; Light, M. E.; Hurtshouse, M. B. Tetrahedron Lett. 2004, 45, 6991;
(d) Saluste, C. G.; Crumpler, S.; Furber, M.; Whitby, R. J. Tetrahedron Lett. 2004, 45, 6995.
(e) Whitby, R. J.; Saluste, C. G.; Furber, M. Org. Biomol. Chem. 2004, 2, 1974.
[9] (a) Baelen, G. V.; Kuijer, S.; Rýcek, L.; Sergeyev, S.; Janssen, E.; de Kanter, F. J. J.; Maes, B. U. W.; Ruijter, E.; Orru, R. V. A. Chem. Eur. J. 2011, 17, 15039;
(b) Estévez, V.; Baelen, G. V.; Lentferink, B. H.; Vlaar, T.; Janssen, E.; Maes, B. U. W.; Orru, R. V. A.; Ruijter, E. ACS Catal. 2014, 4, 40;
(c) Vlaar, T.; Ruijter, E.; Znabet, A.; Janssen, E.; de Kanter, F. J. J.; Maes, B. U. W.; Orru, R. V. A. Org. Lett. 2011, 13, 6496.
[10] (a) Jaing, H.-F.; Liu, B.-F.; Li, Y.-B.; Wang, A.-Z.; Huang, H.-W. Org. Lett. 2011, 13, 1028;
(b) Li, Y.-B.; Zhao, J.; Chen, H.-J.; Liu, B.; Jiang, H.-F. Chem. Commun. 2012, 48, 3545;
(c) Liu, B.-F.; Li, Y.-B.; Yin, M.-Z.; Wu, W.-Q.; Jiang, H.-F. Chem. Commun. 2012, 48, 11446;
(d) Jaing, H.-F.; Yin, M.-Z.; Li, Y.-B.; Liu, B.-F.; Zhao, J.-S.-W.; Wu, W.-Q. Chem. Commun. 2014, 50, 2037;
(e) Liu, B.-F.; Li, Y.-B.; Jaing, H.-F.; Yin, M.-Z.; Huang, H.-W. Adv. Synth. Catal. 2012, 354, 2288.
(f) Li, Z.; Zheng, J.; Hu, W.-G.; Li, J.-X.; Wu, W.-Q.; Jaing, H.-F. Org. Chem. Front. 2017, 4, 1363.
[11] (a) Qiu, G.; Liu, G.; Pu, S.-Z.; Wu, J. Chem. Commun. 2012, 48, 2903;
(b) Qiu, G.; He, Y.-H.; Wu, J. Chem. Commun. 2012, 48, 3836;
(c) Qiu, G.; Liu, Y.; Wu, J. Org. Biomol. Chem. 2013, 11, 798.
[12] (a) Wang, J.; Luo, S.; Huang, J.-B.; Mao, T.-T.; Zhu, Q. Chem. Eur. J. 2014, 20, 11220;
(b) Li, J.; He, Y.-M.; Luo, S.; Lei, J.; Wang, J.; Xie, Z.-Q.; Zhu, Q. J. Org. Chem. 2015, 80, 2223.
[13] (a) Huang, X.-S.; Cong, X.-F.; Mi, P.-B.; Bi, X.-H. Chem. Commun. 2017, 53, 3858.
(b) Fang, G.-C.; Liu, J.-Q.; Fu, J.-K.; Liu, Q.; Bi, X.-H. Org. Lett. 2017, 19, 1346.
(c) Wang, Y.-M.; KiranKumar, R.; Bi, X.-H. Tetrahedron Lett. 2016, 57, 5730.
(d) Xiao, P.; Yuan, H.-Y.; Liu, J.-Q.; Zheng, Y.-Y.; Bi, X.-H.; Zhang, J.-P. ACS Catal. 2015, 5, 6177.
[14] (a) Ren, S.-B.; Zhang, H.-F.; Zhang, J.; Zhang, W.; Liu, Y.-K. Chin. J. Org. Chem. 2016, 36, 1954(in Chinese). (任少波, 张海峰, 张剑, 张巍, 刘运奎, 有机化学, 2016, 36, 1954)
(b) Sun, X.-Y.; Wang, W.-M.; Ma, J.; Yu, S.-Y. Acta Chim. Sinica 2017, 75, 115(in Chinese). (孙晓阳, 王文敏, 马晶, 俞寿云, 化学学报, 2017, 75, 115).
[15] (a) Vllar, T.; Ruijter, E.; Maes, B. U. W.; Orru, R. V. A. Angew. Chem. Int. Ed. 2013, 52, 7084;
(b) Qiu, G.; Ding, Q.-P.; Wu, J. Chem. Soc. Rev. 2013, 42, 5257.
[16] Kharasch, M. S.; Fields, E. K. J. Am. Chem. Soc. 1941, 63, 2316.
[17] Hebrard, F.; Kalck, P. Chem. Rev. 2009, 109, 4272.
[18] (a) Khand, I. U.; Knox, G. R.; Pauson, P. L.; Watts, W. E. J. Chem. Soc. D 1971, 36a.
(b) Khand, I. U.; Knox, G. R.; Pauson, P. L.; Watts, W. E. J. Chem. Soc., Perkin Trans. 1 1973, 975.
[19] Sugano, K.; Tanase, T.; Kobayashi, K.; Yamamoto, Y. Chem. Lett. 1991, 921.
[20] Zhu, T.-H.; Wang, S.-Y.; Wang, G.-N.; Ji, S.-J. Chem. Eur. J. 2013, 19, 5850.
[21] Zhu, T.-H.; Xu, X.-P.; Cao, J.-J.; Wei, T.-Q.; Wang, S.-Y.; Ji, S.-J. Adv. Synth. Catal. 2014, 356, 509.
[22] Zhu, T.-H.; Wang, S.-Y.; Wei, T.-Q.; Ji, S.-J. Adv. Synth. Catal. 2015, 357, 823.
[23] Zhu, T.-H.; Wang, S.-Y.; Tao, Y.-Q.; Wei, T.-Q.; Ji, S.-J. Org. Lett. 2014, 16, 1260.
[24] Xu, P.; Zhu, T.-H.; Wei, T.-Q.; Wang, S.-Y.; Ji, S.-J. RSC Adv. 2016, 6, 32467.
[25] Ahmadi, F.; Bazgir, A. RSC Adv. 2016, 6, 61955.
[26] Gao, Q.; Zhou, P.; Liu, F.; Hao, W.-J.; Yao, C.; Jiang, B.; Tu, S.-J. Chem. Commun. 2015, 51, 9519.
[27] Gu, Z.-Y.; Liu, C.-G.; Wang, S.-Y.; Ji, S.-J. J. Org. Chem. 2017, 82, 2223.
[28] Zou, F.-H.; Chen, X.-W.; Hao, W.-Y. Tetrahedron 2017, 73, 758.
[29] Kalsi, D.; Barsu, N.; Sundararaju, B. Chem. Eur. J. 2018, 24, 1.
[30] (a) Cui, X.; Xu, X.; Jin, L.-M.; Wojtas, L.; Zhang, X. P. Chem. Sci. 2015, 6, 1219.
(b) Zhu, S.-F.; Xu, X.; Perman, J. A.; Zhang, X. P. J. Am. Chem. Soc. 2010, 132, 12796.
(c) Xu, X.; Lu, H.-J.; Ruppel, J. V.; Cui, X.; de Mesa, S. L.; Wojtas, L.; Zhang, X. P. J. Am. Chem. Soc. 2011, 133, 15292.
[31] (a) Goswami, M.; Lyaskovskyy, V.; Domingos, S. R.; Buma, W. J.; Woutersen, S.; Troeppner, O.; Ivanovic-Burmazovic, I.; Lu, H.-J.; Cui, X.; Zhang, X. P.; Reijerse, E. J.; DeBeer, S.; van Schooneveld, M. M.; Pfaff, F. F.; Ray, K.; de Bruin, B. J. Am. Chem. Soc. 2015, 137, 5468.
(b) Paul, N. D.; Mandal, S.; Otte, M.; Cui, X.; Zhang, X. P.; de Bruin, B. J. Am. Chem. Soc. 2014, 136, 1090.
[32] Gu, Z.-Y.; Liu, Y.; Wang, F.; Bao, X.-G.; Wang, S.-Y.; Ji, S.-J. ACS Catal. 2017, 7, 3893.
[33] Jiang, T.; Gu, Z.-Y.; Yin, L.; Wang, S.-Y.; Ji, S.-J. J. Org. Chem. 2017, 82, 7913.
[34] Gu, Z.-Y.; Li, J.-H.; Wang, S.-Y.; Ji, S.-J. Chem. Commun. 2017, 53, 11173.
/
〈 |
|
〉 |