Article

Formaldehyde Adsorption Performance of Selected Metal-Organic Frameworks from High-throughput Computational Screening

  • Bian Lei ,
  • Li Wei ,
  • Wei Zhenzhen ,
  • Liu Xiaowei ,
  • Li Song
Expand
  • a State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074;
    b Shenzhen Research Institute of Huazhong University of Science and Technology, Shenzhen 518057

Received date: 2018-01-16

  Online published: 2018-03-23

Supported by

Project supported by the National Natural Science Foundation of China (No. 51606081) and Basic Research Foundation of Shenzhen (No. JCYJ20160506170043770).

Abstract

With the rapidly increasing number of reported metal-organic frameworks (MOFs), conventional trial-and-error method is obviously not applicable to the development of high-performance MOFs for formaldehyde adsorption, due to its low efficiency, high cost and long developing period. Thus, high-throughput computational screening (HTCS) strategy based on grand canonical Monte Carlo (GCMC) simulation is proposed to quickly explore the top-performing MOFs with high adsorption capability towards formaldehyde. In this work, the computation-ready experimental (CoRE)-MOF database consisting of 2932 MOF structures carrying density derived electrostatic and chemical (DDEC) charges obtained from density function (DFT) theory calculations, were employed in high-throughput GCMC simulations for formaldehyde adsorption from the air. The structure-property relationship from HTCS revealed that the MOF candidates with high formaldehyde uptakes exhibited small pore sizes, relatively high selectivity and moderate heat of adsorption (Qst). Afterwards, the top MOFs with both high uptake and selectivity towards formaldehyde were chosen for further experimental evaluation. Three selected MOFs Y-BTC, ZnCar and Ni-BIC were successfully synthesized and characterized by powder X-ray diffraction (PXRD) and BET surface area analysis. In order to validate our HTCS strategy, the representative Cu-BTC and activated carbon (AC) were also adopted as controls. The formaldehyde adsorption test was performed in a sealed container with the formaldehyde concentration of 100 mg/m3 at 298 K. After 24 h adsorption, the formaldehyde uptakes of the adsorbents were obtained according to the concentration changes prior to and after formaldehyde exposure by UV-vis spectrometer. It was found that the adsorption capacities of Y-BTC, ZnCar and Ni-BIC were 0.38, 0.25 and 0.11 mol/kg, respectively, which were remarkably higher than Cu-BTC (0.08 mol/kg) and AC (0.06 mol/kg). The recyclability of the best performer Y-BTC was also verified. These findings open up the possibility of employing HTCS strategy for highly efficient exploration of MOF adsorbents for formaldehyde removal.

Cite this article

Bian Lei , Li Wei , Wei Zhenzhen , Liu Xiaowei , Li Song . Formaldehyde Adsorption Performance of Selected Metal-Organic Frameworks from High-throughput Computational Screening[J]. Acta Chimica Sinica, 2018 , 76(4) : 303 -310 . DOI: 10.6023/A18010026

References

[1] Zhou, K. W.; Zhou, Y.; Sun, Y.; Tian, X. J. Acta Chim. Sinica 2008, 66, 943. (周考文, 周宇, 孙月, 田雪娇, 化学学报, 2008, 66, 943.)
[2] Chen, Y.; Qi, F. M.; Yang, C.; Ye, W. C.; Wang, C. M. Acta Chim. Sinica 2009, 67, 671. (陈扬, 齐奉明, 杨超, 叶为春, 王春明, 化学学报, 2009, 67, 671.)
[3] Liu, Y. H.; Yu, Q.; Li, C.; Lin, X.; Zhang, X. Q.; Yu, L.; Wu, L. F. Guangdong Chem. Ind. 2011, 38, 128. (刘杨灏, 余倩, 李聪, 林鑫, 张小庆, 余林, 武伦福, 广东化工, 2011, 38, 128.)
[4] Ruhl, M. J. Chem. Eng. Prog. 1993, 89, 37.
[5] Wang, Z.; Wang, W. Z.; Jiang, D.; Zhang, L.; Zheng, Y. Dalton Trans. 2016, 45, 11306.
[6] Zhong, C. L. Structure-Property Relationship and Design of Metal-Organic Frameworks, Science Press, Beijing, 2013. (仲崇立, 金属-有机骨架材料的构效关系及设计, 科学出版社, 北京, 2013.)
[7] Farha, O. K.; Hupp, J. T.; Wilmer, C. E.; Eryazici, I.; Snurr, R. Q.; Gomez-Gualdron, D. A.; Borah, B. J. Am. Chem. Soc. 2014, 36, 15016.
[8] Pei, X. K.; Chen, Y. F.; Li, S. Q.; Zhang, S. H.; Feng, X.; Zhou, J. W.; Wang, B. Sci. China-Chem. 2016, 34, 157.
[9] Li, J. R.; Kuppler, R. J.; Zhou, H. C. Chem. Soc. Rev. 2009, 40, 1477.
[10] Zhang, H.; Li, G. L.; Zhang, K. G.; Liao, C. Y. Acta Chim. Sinica 2017, 75, 841. (张贺, 李国良, 张可刚, 廖春阳, 化学学报, 2017, 75, 841.)
[11] Huang, G.; Chen, Y. Z.; Jiang, H. L. Acta Chim. Sinica 2016, 74, 113. (黄刚, 陈玉贞, 江海龙, 化学学报, 2016, 74, 113.)
[12] Li, L.; Cao, X. Y.; Huang, R. D. Chin. J. Chem. 2015, 34, 143.
[13] Li, X. X.; Shu, L.; Chen, S. Acta Chim. Sinica 2016, 74, 969. (李晓新, 束伦, 陈莎, 化学学报, 2016, 74, 969.)
[14] Yaghi, O. M.; Li, G.; Li, H. Nature 1995, 378, 703.
[15] Furukawa, H.; Müller, U.; Yaghi, O. M. Angew. Chem. 2015, 54, 3417.
[16] Gu, Z. Y.; Wang, G.; Yan, X. P. Anal. Chem. 2010, 82, 1365.
[17] Li, C. M.; Huang, J. P.; Zhu, H. L.; Liu, L. L.; Feng, Y. M.; Hu, G.; Yu, X. B. Sensor. Actuat. B-Chem. 2017, 253, 275.
[18] Zhou, W.; Wu, Y. P.; Zhao, J.; Dong, W. W.; Qiao, X. Q.; Hou, D. F.; Bu, X. H.; Li, D. S. Inorg. Chem. 2017, 56, 14111.
[19] Zhao, Z. Y.; Hao, J. Y.; Song, X. D.; Ren, S. Z.; Hao, C. RSC Adv. 2015, 5, 49752.
[20] Yu, Y.; Zhang, X. M.; Ma, J. P.; Liu, Q. K.; Wang, P.; Dong, Y. B. Chem. Commun. 2014, 50, 1444.
[21] Moradpour, T.; Abbasi, A.; Hecke, K. V. J. Solid State Chem. 2015, 228, 36.
[22] Bellat, J. P.; Bezverkhyy, I.; Weber, G.; Royer, S.; Averlant, R.; Giraudon, J. M.; Lamonier, J. F. J. Hazard. Mater. 2015, 300, 711.
[23] Li, J. Y.; Min, J. Mater. Rev. 2009, 23, 460. (李金洋, 闵洁, 材料导报, 2009, 23, 460.)
[24] Yao, Y. H.; Song, X. D.; Qiu, J. S.; Hao, C. J. Phys. Chem. A 2014, 118, 6191.
[25] Wilmer, C. E.; Leaf, M.; Chang, Y. L.; Farha, O. K.; Hauser, B. G.; Hupp, J. T.; Snurr, R. Q. Nat. Chem. 2012, 4, 83.
[26] Watanabe, T.; Sholl, D. S. Langmuir 2012, 28, 14114.
[27] Sun, W. Z.; Lin, L. C.; Peng, X.; Smit, B. AIChE J. 2014, 60, 2314.
[28] Colon, Y. J.; Fairen-Jimenez, D.; Wilmer, C. E.; Snurr, R. Q. J. Phys. Chem. C 2014, 118, 5383.
[29] Goldsmith, J.; Wong-Foy, A. G.; Cafarella, M. J.; Siegel, D. J. Chem. Mater. 2013, 25, 3373.
[30] Getman, R. B.; Bae, Y. S.; Wilmer, C. E.; Snurr, R. Q. Chem. Rev. 2012, 112, 703.
[31] Sikora, B. J.; Wilmer, C. E.; Greenfield, M. L.; Snurr, R. Q. Chem. Sci. 2012, 3, 2217.
[32] Heest, T. V.; Teichmcgoldrick, S. L.; Greathouse, J. A.; Allendorf, M. D.; Sholl, D. S. J. Phys. Chem. C 2012, 116, 13183.
[33] Lin, L. C.; Berger, A. H.; Martin, R. L.; Kim, J. H.; Swisher, J. A.; Jariwala, K.; Rycroft, C. H.; Bhown, A. S.; Deem, M. W.; Haranczyk, M.; Smit, B. Nat. Mater. 2012, 11, 633.
[34] Haldoupis, E.; Nair, S.; Sholl, D. S. J. Am. Chem. Soc. 2010, 132, 7528.
[35] First, E. L.; Gounaris, C. E.; Floudas, C. A. Langmuir 2013, 29, 5599.
[36] Qiao, Z. W.; Xu, Q. S.; Cheetham, A. K.; Jiang, J. W. J. Phys. Chem. C 2017, 121, 22208.
[37] Li, W.; Rao, Z. Z.; Chung, Y. G.; Li, S. ChemistrySelect 2017, 2, 9458.
[38] Li, S.; Chung, Y. G.; Snurr, R. Q. Langmuir 2016, 32, 10368.
[39] Mcdaniel, J. G.; Li, S.; Tylianakis, E.; Snurr, R. Q.; Schmidt, J. R. J. Phys. Chem. C 2015, 119, 3143.
[40] Li, S.; Chung, Y. G.; Simon, C. M.; Snurr, R. Q. J. Phys. Chem. Lett. 2017, 8, 6135.
[41] Chung, Y. G.; Camp, J.; Haranczyk, M.; Sikora, B. J.; Bury, W.; Krungleviciute, V.; Yildirim, T.; Farha, O. K.; Sholl, D. S.; Snurr, R. Q. Chem. Mater. 2014, 26, 6185.
[42] Banerjee, D.; Simon, C. M.; Plonka, A. M.; Motkuri, R. K.; Liu, J.; Chen, X. Y.; Smit, B.; Parise, J. B.; Haranczyk, M.; Thallapally, P. K. Nat. Commun. 2016, 7, 11831.
[43] Howarth, A. J.; Peters, A. W.; Vermeulen, N. A.; Wang, T. C.; Hupp, J. T.; Farha, O. K. Chem. Mater. 2017, 29, 1.
[44] Liu, X.; Wang, J. Y.; Li, Q. Y.; Jiang, S.; Zhang, T. H.; Ji, S. F. J. Rare-Earths 2014, 32, 189.
[45] Katsoulidis, A. P.; Park, K. S.; Antypov, D.; Martigastaldo, C.; Miller, G. J.; Warren, J. E.; Robertson, C. M.; Blanc, F.; Darling, G. R.; Berry, N. G.; Purton, J. A.; Adams, D. J. Angew. Chem. Int. Ed. 2014, 126, 197.
[46] Wang, Q. M.; Shen, D. M.; Bülow, M.; Lau, M. L.; Deng, S. G.; Fitch, F. R.; Lemcoff, N. O.; Semanscin, J. Micropor. Mesopor. Mater. 2002, 55, 217.
[47] Xia, Q. B.; Miao, J. P.; Sun, X. J.; Zhou, X.; Li, Z.; Xi, H. X. J. South China Univ. Tech. (Nat. Sci. Ed.) 2013, 12, 24. (夏启斌, 苗晋朋, 孙雪娇, 周欣, 李忠, 奚红霞, 华南理工大学学报(自然科学版), 2013, 12, 24.)
[48] Huo, S. H. Ph. D. Dissertation, Nankai University, Tianjin, 2012. (霍淑慧, 博士论文, 南开大学, 天津, 2012.)
[49] Ke, F. Ph. D. Dissertation, University of Science and Technology of China, Hefei, 2014. (柯飞, 博士论文, 中国科学技术大学, 合肥, 2014.)
[50] Manz, T. A.; Limas, N. G. RSC Adv. 2016, 6, 47771.
[51] Willems, T. F.; Rycroft, C. H.; Kazi, M.; Meza, J. C.; Haranczyk, M. Micropor. Mesopor. Mater. 2012, 149, 134.
[52] Rappe, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard, W. A.; Skiff, W. M. J. Am. Chem. Soc. 1992, 114, 10024.
[53] Potoff, J. J.; Siepmann, J. I. AIChE J. 2001, 47, 1676.
[54] Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; Lee, H.; Pedersen, L. G. J. Chem. Phys. 1995, 103, 8577.
[55] Hantal, G.; Jedlovszky, P.; Hoang, P. N. M.; Picaud, S. J. Phys. Chem. C 2007, 111, 14170.
[56] Dubbeldam, D.; Calero, S.; Ellis, D. E.; Snurr, R. Q. Mol. Simulat. 2015, 42, 81.
[57] Wu, L.; Xue, M.; Huang, L.; Qiu, S. L. Sci. China-Chem. 2011, 54, 1441.

Outlines

/