Facile Fabrication of Heterogeneous Nanochannels with High Ionic Rectification
Received date: 2018-01-21
Online published: 2018-03-23
Supported by
Project supported by the National Key Research and Development Program of China (Nos. 2017YFA0206902, 2017YFA0206900) and the National Natural Science Foundation of China (No. 21641006).
Ion channels in cell membranes play crucial roles in many biological activities. Many artificial nanochannels have been constructed to mimic the organism functions and sensitive to external stimuli. The artificial nanochannels have drawn enormous research attention due to their potential applications and simplicity. In this work, the hourglass shaped alumina nanochannels were fabricated using a double-sided anodization method with an in situ pore opening process. We constructed organic-inorganic heterogeneous nanochannels based on anodic alumina oxide (AAO) and transparent tape by the method of heat treatment. The surface morphology and component of nanoporous heterogeneous membrane were characterized by scanning electron microscope (SEM) and ATR-FTIR spectrum. These two kinds of nanochannels have differential diameters and amphoteric characteristics. Heterogeneous nanochannels are composed of organic nanochannels and AAO pores containing carboxyl and hydroxyl groups, respectively. Ion transport through the heterogeneous nanochannels can be modulated, because of the protonation state of the nanochannels under different pH conditions. Because of the heterogeneity of structure and charge, heterojunction is formed in the junction of anodic alumina oxide nanochannels and organic nanochannels. Such an abrupt junction yields a more efficient control of ion accumulation and depletion in the heterogeneous nanochannel. The ionic transport properties of heterogeneous nanochannels can be studied by measuring the current-voltage (I-V) curves. The heterogeneous nanochannels exhibit pH sensitivity. Changing the pH value from acidic to alkaline values, a significant decrease in positive charges and the deprotonated carboxyl group with negative charges can be observed. Due to the synergistic effect of the nanoporous AAO and organic nanochannels, heterogeneous nanochannels exhibit high and controllable rectification with single rectification direction over a wide pH range. The diode-like behavior is quantified by measuring the current rectification ratios. The novel strategy introduced here is a low-cost, scalable, and robust alternative for the fabrication of heterogeneous nanochannels system for nanofluidic applications. This porous heterogeneous membrane have potential applications in the fields of ion transport, separation of biomolecules and energy conversion system.
Zhang Qian , Liu Qingqing , Zhang Qianqian , Fan Xia , Zhai Jin . Facile Fabrication of Heterogeneous Nanochannels with High Ionic Rectification[J]. Acta Chimica Sinica, 2018 , 76(5) : 400 -407 . DOI: 10.6023/A18010030
[1] Gouaux, E.; MacKinnon, R. Science 2005, 310, 1461.
[2] Beckstein, O.; Biggin, P. C.; Bond, P.; Bright, J. N.; Domene, C.; Grottesi, A.; Holyoake, J.; Sansom, M. S. P. FEBS Lett. 2003, 555, 85.
[3] Jiang, Y. X.; Lee, A.; Chen, J. Y.; Cadene, M.; Chait, B. T.; MacKinnon, R. Nature 2002, 417, 515.
[4] Hou, X.; Jiang, L. ACS Nano 2009, 3, 3339.
[5] de la Escosura-Muniz, A.; Merkoci, A. ACS Nano 2012, 6, 7556.
[6] Eisenman, G.; Horn, R. J. Membrane Biol. 1983, 76, 197.
[7] Meer, G.; Voelker, D. R.; Feigenson, G. W. Nat. Rev. Mol. Cell Bio. 2008, 9, 112.
[8] Wang, H.; Liu, Q.; Li, W. H.; Wen, L. P.; Zheng, D.; Bo, Z. S.; Jiang, L. ACS Nano 2016, 10, 3606.
[9] Han, K. Y.; Heng, L. P.; Wen, L. P.; Jiang, L. Nanoscale 2016, 8, 12318.
[10] Zhang, W. J.; Meng, Z. Y.; Zhai, J.; Heng, L. P. Chem. Commun. 2014, 50, 3552.
[11] Chen, Y.; Zhou, D.; Meng, Z. Y.; Zhai, J. Chem. Commun. 2016, 52, 10020.
[12] Xu, Y. L.; Meng, Z. Y.; Zhai, J. Acta Chim. Sinica 2016, 74, 538. (许阳蕾, 孟哲一, 翟锦, 化学学报, 2016, 74, 538.)
[13] Zhou, D.; Meng, Z. Y.; Zhang, M. H.; Zhai, J. Acta Chim. Sinica 2015, 73, 716. (周迪, 孟哲一, 张明辉, 翟锦, 化学学报, 2015, 73, 716.)
[14] Gao, J.; Guo, W.; Feng, D.; Wang, H. T.; Zhao, D. Y.; Jiang, L. J. Am. Chem. Soc. 2014, 136, 12265.
[15] Zeng, L.; Yang, Z.; Zhang, H. C.; Hou, X.; Tian, Y.; Yang, F.; Zhou, J. J.; Li, L.; Jiang, L. Small 2014, 10, 793.
[16] Che, Y. P.; Zhai, J. Sci. Sin. Chim. 2015, 45, 262. (车玉萍, 翟锦, 中国科学:化学, 2015, 45, 262.)
[17] Kong, Y.; Fan, X.; Zhang, M. H.; Hou, X.; Liu, Z. Y.; Zhai, J.; Jiang, L. ACS Appl. Mater. Interfaces 2013, 5, 7931.
[18] Meng, Z. Y.; Chen, Y.; Li, X. L.; Xu, Y. L.; Zhai, J. ACS Appl. Mater. Interfaces 2015, 7, 7709.
[19] Li, X. L.; Wang, Y.; Zhai, J. Acta Chim. Sinica 2016, 74, 597. (李秀林, 汪洋, 翟锦, 化学学报, 2016, 74, 597.)
[20] Li, C. Y.; Ma, F. X.; Wu, Z. Q.; Gao, H. L.; Shao, W. T.; Wang, K.; Xia, X. H. Adv. Funct. Mater. 2013, 23, 3836.
[21] Kong, Y.; Fan, X.; Zhang, M. H.; Hou, X.; Liu, Z. Y.; Zhai, J.; Jiang, L. ACS Appl. Mater. Interfaces 2013, 5, 7931.
[22] Hou, X.; Dong, H.; Zhu, D. B.; Jiang, L. Small 2010, 6, 361.
[23] Meng, Z. Y.; Bao, H.; Wang, J. T.; Jiang, C. D.; Zhang, M. H.; Zhai, J.; Jiang, L. Adv. Mater. 2014, 26, 2329.
[24] Li, P.; Xie, G. H.; Kong, X. Y.; Zhang, Z.; Xiao, K.; Wen, L. P.; Jiang, L. Angew. Chem., Int. Ed. 2016, 55, 15637.
[25] Ali, M.; Nasir, S.; Ramirez, P.; Ahmed, I.; Nguyen, Q. H.; Fruk, L.; Mafe, S.; Ensinger, W. Adv. Funct. Mater. 2012, 22, 390.
[26] Zhang, H. C.; Hou, X.; Hou, J.; Zeng, L.; Tian, Y.; Li, L.; Jiang, L. Adv. Funct. Mater. 2015, 25, 1102.
[27] Buchsbaum, S. F.; Nguyen, G.; Howorka, S.; Siwy, Z. S. J. Am. Chem. Soc. 2014, 136, 9902.
[28] Hou, X.; Liu, Y. J.; Dong, H.; Yang, F.; Li, L.; Jiang, L. Adv. Mater. 2010, 22, 2440.
[29] Chun, K. Y.; Choi, W.; Roh, S. C.; Han, C. S. Nanoscale 2015, 7, 12427.
[30] Wang, R.; Sun, Y.; Zhang, F.; Song, M. M.; Tian, D. M.; Li, H. B. Angew. Chem., Int. Ed. 2017, 56, 5294.
[31] Kameta, N.; Matsuzawa, T.; Yaoi, K.; Masuda, M. RSC Adv. 2016, 6, 36744.
[32] Meng, Z. Y.; Jiang, C. D.; Li, X. L.; Zhai, J. ACS Appl. Mater. Interfaces 2014, 6, 3794.
[33] Hou, X.; Guo, W.; Xia, F.; Nie, F. Q.; Dong, H.; Tian, Y.; Wen, L. P.; Wang, L.; Cao, L. X.; Yang, Y.; Xue, J. M.; Song, Y. L.; Wang, Y. G.; Liu, D. S.; Jiang, L. J. Am. Chem. Soc. 2009, 131, 7800.
[34] Han, C. P.; Su, H. Y.; Sun, Z. Y.; Wen, L.; Tian, D. M.; Xu, K.; Hu, J. F.; Wang, A. M.; Li, H. B.; Jiang, L. Chem. Eur. J. 2013, 19, 9388.
[35] Guan, W. J.; Reed, M. A. Nano Lett. 2012, 12, 6441.
[36] Kim, J.; Kim, H. Y.; Lee, H.; Kim, S. J. Langmuir 2016, 32, 6478.
[37] Zhang, Q. Q.; Liu, Z. Y.; Wang, K. F.; Zhai, J. Adv. Funct. Mater. 2015, 25, 2091.
[38] Zhang, J. C.; Yang, Y.; Zhang, Z. C.; Wang, P. P.; Wang, X. Adv. Mater. 2014, 26, 1071.
[39] Cheng, L. J.; Guo, L. J. ACS Nano 2009, 3, 575.
[40] Zhang, Z.; Kong, X. Y.; Xiao, K.; Liu, Q.; Xie, G. H.; Li, P.; Ma, J.; Tian, Y.; Wen, L. P.; Jiang, L. J. Am. Chem. Soc. 2015, 137, 14765.
[41] Cheng, H. F.; Zhou, Y.; Feng, Y. P.; Geng, W. X.; Liu, Q. F.; Guo, W.; Jiang, L. Adv. Mater. 2017, 29, 1700177.
[42] Sui, X.; Zhang, Z.; Zhang, Z. Y.; Wang, Z. W.; Li, C.; Yuan, H.; Gao, L. C.; Wen, L. P.; Fan, X.; Yang, L. J.; Zhang, X. R.; Jiang, L. Angew. Chem. Int. Ed. 2016, 55, 13056.
[43] Chen, W.; Jin, B.; Hu, Y. L.; Lu, Y.; Xia, X. H. Small 2012, 8, 1001.
[44] Wang, H.; Liu, Q.; Li, W. H.; Wen, L. P.; Zheng, D.; Bo, Z. S.; Jiang, L. ACS Nano 2016, 10, 3606.
[45] Hernandez-Guerrero, M.; Stenzel, M. H. Polym. Chem. 2012, 3, 563.
[46] Choi, E.; Wang, C.; Chang, G. T.; Park, J. Nano Lett. 2016, 16, 2189.
[47] Siwy, Z. S. Adv. Funct. Mater. 2006, 16, 735.
[48] Zhang, Z.; Sui, X.; Li, P.; Xie, G. H.; Kong, X. Y.; Xiao, K.; Gao, L. C.; Wen, L. P.; Jiang, L. J. Am. Chem. Soc. 2017, 139, 8905.
[49] Gao, P. C.; Hu, L. T.; Liu, N. N.; Yang, Z. K.; Lou, X. D.; Zhai, T. Y.; Li, H. Q.; Xia, F. Adv. Mater. 2016, 28, 460.
/
〈 |
|
〉 |