Research on High Performance Ammonium Removal Materials Based on δ-MnO2 Nanoplate Arrays Decorated Graphite Felt
Received date: 2018-02-10
Online published: 2018-04-03
Supported by
Project supported by the National Natural Science Foundation of China (No. 21506010) and the Beijing Natural Science Foundation (No. 2182050).
We synthesized three kinds of MnO2 powder with different crystalline phases including α-MnO2 nanoflowers, β-MnO2 nanorods and δ-MnO2 micro-particles. The structure and morphology of prepared MnO2 were studied by XRD (X-ray diffraction), SEM (Scanning Electron Microscope), TEM (Transmission Electron Microscope) and XPS (X-ray photoelectron spectroscopy), systematically. Adsorption process was conducted in NH4Cl solution (40 mg·L-1 NH3-N) and actual water samples containing NH4+, Ca2+, Mg2+, K+ and Na+, respectively. The results demonstrate that δ-MnO2 with 7.2 Å interlayer spacing which is a little larger than the diameter of hydrated ammonium (6.62 Å) has high adsorption capacity; α-MnO2 with[2×2] tunnel of 4.6 Å has less adsorption capacity than that of δ-MnO2, and β-MnO2 whose[1×1] tunnel is just 1.89 Å, barely has adsorption capacity. Then MnO2NPs/GF (MnO2 nanoplates decorated graphite felt) was prepared via a facile in-situ redox process. Graphite felt (GF) was immersed in KMnO4 solution (4 g·L-1, pH=2) at 65℃ for 5 h to get MnO2NPs/GF. GF not only reacted as the reductant of KMnO4, but also acted as 3D framework to support the in-situ deposited MnO2NPs. MnO2NPs/GF shows high adsorption capacity (15 mg·g-1) and good selectivity (86.7%). In repetitive adsorption-desorption experiments, MnO2NPs/GF not only exhibits good stability after 20 cycles, but also decreases the concentration of NH3-N to as low as 1 mg·L-1. The thermodynamics experiment demonstrates that the adsorption isotherm fit well with Langmuir isotherm, and the adsorption process corresponds to the pseudo-second-order model. The excellent performance of MnO2NPs/GF is attributed to the following three aspects. Firstly, the 7.2 Å interlayer spacing of δ-MnO2 is suitable for the exchange-adsorption of NH4+. Secondly, the ultra-thin MnO2 nanoplate arrays, which vertically grow on the graphite felt substrate, provide fast path and convenient interface for ion exchange. Finally, the interlaced nanoplates with self-supported structure ensure its high stability. In a conclusion, MnO2NPs/GF has a bright future in the field of ammonium removal.
Sun Mengjia , Wu Tianyi , Li Tianyu , Guo Fengqiao , Tang Yang , Mo Hengliang , Yang Zhitao , Wan Pingyu . Research on High Performance Ammonium Removal Materials Based on δ-MnO2 Nanoplate Arrays Decorated Graphite Felt[J]. Acta Chimica Sinica, 2018 , 76(6) : 467 -474 . DOI: 10.6023/A18020069
[1] Origin water, Origin water is a practitioner of "Class IV water" standard and a leader of MBR technique, new normal 036/14/2016, http://www.originwater.com/cpyjs/MF/jslt/5613.html(碧水源, 碧水源"IV类水"标准的践行者, MBR技术的领导者, 新常态032016年6月14日, http://www.originwater.com/cpyjs/MF/jslt/5613.html)
[2] (a) Guaya, D.; Valderrama, C.; Farran, A.; Cortina, J. L. J. Chem. Technol. Biotechnol. 2016, 91, 1737;
(b) Thornton, A.; Pearce, P.; Parsons, S. A. Water Res. 2007, 41, 433;
(c) Montegut, G.; Michelin, L.; Brendle, J.; Lebeau, B.; Patarin, J. J. Environ. Manage. 2016, 167, 147;
(d) Zielinski, M.; Zielinska, M.; Debowski, M. Desalin. Water Treat. 2016, 57, 8748.
[3] (a) Moussavi, G.; Talebi, S.; Farohki, M.; Mojtabaee Sabouti, R. Desalin. Water Treat. 2013, 51, 5710;
(b) Langwaldt, J. Sep. Sci. Technol. 2008, 43, 2166;
(c) Wang, Y. F. Adv. Mater. Res. 2012, 554-556, 2031.
[4] (a) Luukkonen, T.; Sarkkinen, M.; Kemppainen, K.; Ram?, J.; Lassi, U. Appl. Clay Sci. 2016, 119, 266;
(b) Luukkonen, T.; Tolonen, E.-T.; Runtti, H.; Kemppainen, K.; Peramaki, P.; Ram?, J.; Lassi, U. J. Mater. Sci. 2017, 52, 9363;
(c) Liu, Q. Q. Ph.D. Dissertation, Tianjin University, Tianjin, 2011. (刘琼琼, 博士论文, 天津大学, 天津, 2011.)
[5] Li, X.-J.; Zhao, Y.; Chu, W.-G.; Wang, Y.; Li, Z.-J.; Jiang, P.; Zhao, X.-C.; Liang, M.; Liu, Y. RSC Adv. 2015, 5, 77437.
[6] (a) Yuan, Y.; Nie, A.; Odegard, G. M.; Xu, R.; Zhou, D.; Santhanagopalan, S.; He, K.; Asayesh-Ardakani, H.; Meng, D. D.; Klie, R. F.; Johnson, C.; Lu, J.; Shahbazian-Yassar, R. Nano Lett. 2015, 15, 2998;
(b) Devaraj, S.; Munichandraiah, N. J. Phys. Chem. C 2008, 112, 4406.
[7] Li, L.; Sui, J.; Huang, R.; Xiang, W.; Qin, W. RSC Adv. 2017, 7, 42289.
[8] Wang, L.; Ma, W.; Han, M.; Meng, C. G. Acta Chim. Sinica 2007, 65, 1135. (王禄, 马伟, 韩梅, 孟长功, 化学学报, 2007, 65, 1135.)
[9] Zhu, L. J.; Zhang, J. C.; Zai, D. X.; Chai, J. J.; Wang, X. J. Saf. Environ. 2007, 7, 20. (朱丽珺, 张金池, 宰德欣, 柴家觉, 王忺, 安全与环境学报, 2007, 7, 20.)
[10] Zhang, P.; He, M.; Xu, S.; Yan, X. J. Mater. Chem. A 2015, 3, 10811.
[11] Liu, J.; Ge, X.; Ye, X.; Wang, G.; Zhang, H.; Zhou, H.; Zhang, Y.; Zhao, H. J. Mater. Chem. A 2016, 4, 1970.
[12] Liu, L.; Guo, X.; Tallon, R.; Huang, X.; Chen, J. Chem. Commun. 2017, 53, 881.
[13] Liu, H.; Hu, Z.; Tian, L.; Su, Y.; Ruan, H.; Zhang, L.; Hu, R. Ceram. Int. 2016, 42, 13519.
[14] (a) Tansel, B.; Sager, J.; Rector, T.; Garland, J.; Strayer, R. F.; Levine, L.; Roberts, M.; Hummerick, M.; Bauer, J. Sep. Purif. Technol. 2006, 51, 40;
(b) Volkov, A. G.; Paula, S.; Deamer, D. W. Bioelectrochem. Bioenerg. 1997, 42, 153;
(c) Nightingale, E. R. J. Phys. Chem. 1959, 63, 1381.
[15] Wimalasiri, Y.; Mossad, M.; Zou, L. Desalination 2015, 357, 178.
[16] Rashid, M.; Price, N. T.; Gracia Pinilla, M. A.; O'Shea, K. E. Water Res. 2017, 123, 353.
[17] Wang, X.; Li, Y. Chem. Commun. 2002, (7), 764.
[18] Wang, X.; Li, Y. Chem.-Eur. J. 2003, 9, 300.
[19] Zou, X.; Hou, L.; Zou, J. J. Beijing Inst. Technol. 2009, 27,20.
[20] Ministry of Environmental Protection of the People's Republic of China, HJ 535-2009, Water Quality-Determination of Ammonia Nitrogen-Nessler's Reagent Spectrophotometry, 2009. (中华人民共和国环境保护部, HJ 535-2009, 水质氨氮的测定纳氏试剂分光光度法, 2009.)
[21] Mazloomi, F.; Jalali, M. J. Environ. Chem. Eng. 2016, 4, 240.
[22] He, Y.; Lin, H.; Dong, Y.; Liu, Q.; Wang, L. Chemosphere 2016, 164, 387.
[23] Wimalasiri, Y.; Mossad, M.; Zou, L. Desalination 2015, 357, 178.
/
| 〈 |
|
〉 |