Iron Dinitrogen Complexes Supported by Tris(NHC)borate Ligand: Synthesis, Characterization, and Reactivity Study
Received date: 2018-03-10
Online published: 2018-04-08
Supported by
Project supported by the National Key Research and Development Program (No. 2016YFA0202900), the National Natural Science Foundation of China (Nos. 21725104, 21690062, 21432001), the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB20000000) and the Fundamental Research Funds for the Central Universities (No. 222201717003).
The use of the N-adamantyl-substituted tris(NHC)borate ligand phenyltris(3-(1-adamantylimidazol-2-ylidene))borate (PhB(AdIm)3-) has enabled the preparation of the high-spin tetrahedral iron(I)-and iron(0)-N2 complexes[PhB(AdIm)3Fe(N2)] (2) and[K(18-C-6)(THF)] [PhB(AdIm)3Fe(N2)] (4), from the reduction of the ferrous precursor[PhB(AdIm)3FeCl] (1) and the iron(I) complex 2 with KC8 under N2, respectively. Single-crystal X-ray diffraction studies revealed a distorted tetrahedral coordination geometry for the iron centers in 2 and 4 with the terminally bonded N2 ligand sitting in the cavity composed by the three adamantyl groups of the borate ligand. The frequencies of the N-N stretching resonance (1928 and 1807 cm-1) of 2 and 4 are the lowest among the reported terminal N2complexes of iron(I) and iron(0), respectively. 57Fe Mössbauer spectrum (δ=0.59 mms-1; ΔEQ=1.31 mms-1) and solution magnetic susceptibility measurement (μeff=5.2(1) μB) of 2 supported its high-spin iron(I) nature. The cyclic voltammogram of 2 measured in THF shows a quasi-reversible redox waves with E1/2=-2.11 V (vs SCE), which is assignable to the corresponding redox process of[PhB(AdIm)3Fe(N2)]1-/0. In addition, the reaction of 2 with an excess amount of CO led to the formation of the bis(carbonyl)iron(I) complex,[PhB(AdIm)3Fe(CO)2] (3), that was characterized by IR spectrum, solution magnetic susceptibility measurement, 1H NMR, as well as elemental analysis. The protonation of 2 and 4 with HCl or HOTf at -78℃ only led to the formation of NH2NH2 and NH3 in low yields[less than 9(3)% and 5(3)% (per mol Fe), respectively]. However, 1, 2, and 4 proved effective catalysts for the reductive silylation of N2by KC8 and Me3SiCl to afford N(SiMe3)3 with comparable catalytic activity. The TON of these catalytic systems could reach 87 using 0.005 mmol of the catalyst, 2000 equiv. of KC8, and 2000 equiv. of Me3SiCl in 10 mL Et2O at room temperature after 24 h.
Fan Yiming , Cheng Jun , Gao Yafei , Shi Min , Deng Liang . Iron Dinitrogen Complexes Supported by Tris(NHC)borate Ligand: Synthesis, Characterization, and Reactivity Study[J]. Acta Chimica Sinica, 2018 , 76(6) : 445 -452 . DOI: 10.6023/A18030095
[1] (a) Winter, H. C.; Burris, R. H. Annu. Rev. Biochem. 1976, 45, 409.
(b) Bulen, W. A.; LeComte, J. R. Proc. Natl. Acad. Sci. U. S. A. 1966, 56, 979.
(c) Mortenson, L. E. Fed. Proc. 1965, 24, 233.
(d) Mortenson, L. E. Biochim. Biophys. Acta 1966, 127, 18.
(e) Hageman, R. V.; Burris, R. H. Proc. Natl. Acad. Sci. U. S. A. 1978, 75, 2699.
(f) Dean, D. R.; Bolin, J. T.; Zheng, L. J. Bacteriol. 1993, 175, 6737.
(g) Howard, J. B.; Rees, D. C. Annu. Rev. Biochem. 1994, 63, 235.
(h) Kim, J.; Rees, D. C. Biochemistry 1994, 33, 389.
(i) Wang, Y.-S.; Li, J.-L. Prog. Nat. Sci. 2000, 10, 481. (王友绍, 李季伦, 自然科学进展, 2000, 10, 481.)
[2] (a) Spatzal, T.; Aksoyoglu, M.; Zhang, L.; Andrade, S. L. A.; Schleicher, E.; Weber, S.; Rees, D. C.; Einsle, O. Science 2011, 334, 940.
(b) Lancaster, K. M.; Roemelt, M.; Ettenhuber, P.; Hu, Y.; Ribbe, M. W.; Neese, F.; Bergmann, U.; DeBeer, S. Science 2011, 334, 974.
(c) Lancaster, K. M.; Hu, Y.; Bergmann, U.; Ribbe, M. W.; DeBeer, S. J. Am. Chem. Soc. 2013, 135, 610.
(d) Wiig, J. A.; Hu, Y.; Lee, C. C.; Ribbe, M. W. Science 2012, 337, 1672.
(e) Wiig, J. A.; Lee, C. C.; Hu, Y.; Ribbe, M. W. J. Am. Chem. Soc. 2013, 135, 4982.
(f) Zhang, C.-X.; Fan, H.-J.; Liu, Q.-T. Prog. Chem. 1997, 9, 266. (张纯喜, 樊红军, 刘秋田, 化学进展, 1997, 9, 266.)
(g) Chen, Q.-L.; Chen, H.-B.; Cao, Z.-X.; Zhou, Z.-H.; Wan, H.-L.; Li, Y.; Li, J.-L. Sci. China, Chem. 2014, 44, 1849. (陈全亮, 陈洪斌, 曹泽星, 周朝晖, 万惠霖, 李颖, 李季伦, 中国科学:化学, 2014, 44, 1849.)
[3] (a) Hoffman, B. M.; Lukoyanov, D.; Yang, Z.-Y.; Dean, D. R.; Seefeldt, L. C. Chem. Rev. 2014, 114, 4041.
(b) Coric, I.; Holland, P. L. J. Am. Chem. Soc. 2016, 138, 7200.
[4] (a) Rittle, J.; Peters, J. C. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 15898.
(b) Creutz, S. E.; Peters, J. C. J. Am. Chem. Soc. 2014, 136, 1105.
(c) Coric, I.; Mercado, B. Q.; Bill, E.; Vinyard, D. J.; Holland, P. L. Nature 2015, 526, 96.
(d) Ung, G.; Peters, J. C. Angew. Chem., Int. Ed. 2015, 54, 532.
(e) Ouyang, Z.-W.; Cheng, J.; Li, L.-L.; Bao, X.-L.; Deng, L. Chem.-Eur. J. 2016, 22, 14162.
[5] (a) Kastner, J.; Bl?chl, P. E. J. Am. Chem. Soc. 2007, 129, 2998.
(b) Spatzal, T.; Perez, K. A.; Einsle, O.; Howard, J. B.; Rees, D. C. Science 2014, 345, 1620.
[6] (a) Hazari, N. Chem. Soc. Rev. 2010, 39, 4044.
(b) Crossland, J. L.; Tyler, D. R. Coord. Chem. Rev. 2010, 254, 1883.
(c) Ohki, Y.; Seino, H. Dalton Trans. 2016, 45, 874.
(d) Danopoulos, A. A.; Wright, J. A.; Motherwell, W. B. Chem. Commun. 2005, 784.
(e) Pugh, D.; Wells, N. J.; Evans, D. J.; Danopoulos, A. A. Dalton Trans. 2009, 7189.
(f) Yu, R. P.; Darmon, J. M.; Hoyt, J. M.; Margulieux, G. W.; Turner, Z. R.; Chirik, P. J. ACS Catal. 2012, 2, 1760.
(g) Bartholomew, E. R.; Volpe, E. C.; Wolczanski, P. T.; Lobkovsky, E. B.; Cundari, T. R. J. Am. Chem. Soc. 2013, 135, 3511.
[7] (a) Bourissou, D.; Guerret, O.; Gabbai, F. P.; Bertrand, G. Chem. Rev. 2000, 100, 39.
(b) Glorius, F., N-Heterocyclic Carbenes in Transition Metal Catalysis, Topics in Organometallic Chemistry, Vol. 21, Springer, Berlin, 2007.
(c) Hahn, F. E.; Jahnke, M. C. Angew. Chem., Int. Ed. 2008, 47, 3122.
[8] (a) Ingleson, M. J.; Layfield, R. A. Chem. Commun. 2012, 48, 3579.
(b) Riener, K.; Haslinger, S.; Raba, A.; H??gerl, M. P.; Cokoja, M.; Herrmann, W. A.; Kühn, F. E. Chem. Rev. 2014, 114, 5215.
[9] McSkimming, A.; Harman, W. H. J. Am. Chem. Soc. 2015, 137, 8940.
[10] Cowley, R. E.; Bontchev, R. P.; Duesler, E. N.; Smith, J. M. Inorg. Chem. 2006, 45, 9771.
[11] Scepaniak, J. J.; Fulton, M. D.; Bontchev, R. P.; Duesler, E. N.; Kirk, M. L.; Smith, J. M. J. Am. Chem. Soc. 2008, 130, 10515.
[12] (a) Ouyang, Z.-W.; Meng, Y.; Cheng, J.; Xiao, J.; Gao, S.; Deng, L. Organometallics 2016, 35, 1361.
(b) Ohki, Y.; Hoshino, R.; Tatsumi, K. Organometallics 2016, 35, 1368.
[13] Mankad, N. P.; Whited, M. T.; Peters, J. C. Angew. Chem., Int. Ed. 2007, 46, 5768.
[14] Gilbert-Wilson, R.; Field, L. D.; Colbran, S. B.; Bhadbhade, M. M. Inorg. Chem. 2013, 52, 3043.
[15] Hounjet, L. J.; Adhikari, D.; Pink, M.; Carroll, P. J.; Mindiola, D. J. Z. Anorg. Allg. Chem. 2015, 641, 45.
[16] Smith, J. M. Comments Inorg. Chem. 2008, 29, 189.
[17] Hickey, A. K.; Chen, C.; Pink, M.; Smith, J. M. Organometallics 2015, 34, 4560.
[18] Lee, Y.; Mankad, N. P.; Peters, J. C. Nat. Chem. 2010, 2, 558.
[19] Komiya, S.; Akita, M.; Yoza, A.; Kasuga, N.; Fukuoka, A.; Kai, Y. J. Chem. Soc., Chem. Commun. 1993, 787.
[20] Gilbert-Wilson, R.; Field, L. D.; Colbran, S. B.; Bhadbhade, M. M. Inorg. Chem. 2013, 52, 3043.
[21] Creutz, S. E.; Peters, J. C. J. Am. Chem. Soc. 2014, 136, 1105.
[22] (a) Hills, A.; Hughes, D. A.; Jimenez-Tenorio, M.; Leigh, G. J.; Rowley, A. T. J. Chem. Soc., Dalton Trans. 1993, 3041.
(b) Hall, D. A.; Leigh, G. J. J. Chem. Soc., Dalton Trans. 1996, 3539.
[23] Gilbertson, J. D.; Szymczak, N. K.; Tyler, D. R. J. Am. Chem. Soc. 2005, 127, 10184.
[24] George, T. A.; Rose, D. J.; Chang, Y.; Chen, Q.; Zubieta, J. Inorg. Chem. 1995, 34, 1295.
[25] Li, J.-P.; Yin, J.-H.; Yu, C.; Zhang, W.-X.; Xi, Z.-F. Acta Chim. Sinica 2017, 75, 733. (李嘉鹏, 殷剑昊, 俞超, 张文雄, 席振峰, 化学学报, 2017, 75, 733.)
[26] Shiina, K. J. Am. Chem. Soc. 1972, 94, 9266.
[27] Tanaka, H.; Sasada, A.; Kouno, T.; Yuki, M.; Miyake, Y.; Nakanishi, H.; Nishibayashi, Y.; Yoshizawa, K. J. Am. Chem. Soc. 2011, 133, 3498.
[28] Liao, Q.; Saffon-Merceron, N.; Mezailles, N. Angew. Chem., Int. Ed. 2014, 53, 14206.
[29] Araake, R.; Sakadani, K.; Tada, M.; Sakai, Y.; Ohki, Y. J. Am. Chem. Soc. 2017, 139, 5596.
[30] Siedschlag, R. B.; Bernales, V.; Vogiatzis, K. D.; Planas, N.; Clouston, L. J.; Bill, E.; Gagliardi, L.; Lu, C. C. J. Am. Chem. Soc. 2015, 137, 4638.
[31] Gao, Y.-F.; Li, G.-Y.; Deng, L. J. Am. Chem. Soc. 2018, 140, 2239.
[32] Weatherburu, M. W. Anal. Chem. 1967, 39, 971.
[33] Watt, G. W.; Chrisp, J. D. Anal. Chem. 1952, 24, 2006.
/
〈 |
|
〉 |