One-step Strategy to Synthesize Porous Carbons by Carbonized Porous Organic Materials and Their Applications
Received date: 2018-02-01
Online published: 2018-04-09
Supported by
Project supported by the National Natural Science Foundation of China (Nos. 21390394, 21471065) and the "111" project (No. B07016).
It is an effective way to solve the problems of environmental pollution and energy shortage by exploring and utilizing clean, renewable energy. Porous carbons which prepared by carbonized porous organic materials with high carbon content, have high specific surface area, good physical and chemical stability, and excellent mechanical performance, generally higher conductivity, therefore can be widely used in many fields, such as clean energy storage, different gases separation, and energy storage and conversion, etc. The common methods for preparing porous carbon from porous organic materials are divided into non-activated carbonization and activation carbonization. The morphology and pore structure of porous carbons which prepared by different preparation methods are different. The structure properties of porous carbon materials can affect their application. Reasonable design and utilization of the "pore" of porous carbon, displaying "sieving effect" of pore size can effectively store and separate the gas molecules. In the field of energy storage and conversion, such as lithium battery, the "confinement effect" is an important factor that affects the electrical performance of lithium battery. The smaller pores in the porous carbon materials can limited the active components, while the larger pores are in favor of rapidly diffusion, the synergistic effect of the two different type pores can greatly improve the electrical performance of lithium battery. This review systematically summarize the preparation methods of porous carbons derived from porous organic materials, and a brief comparison of different methods for preparing porous carbon is presented which proved that carbonized porous organic materials is a simple, efficient, environmentally friendly, and controllable pore structure method for the preparation of porous carbon with excellent performance. Then, the review describes in detail about the application of porous carbons in gas adsorption, storage, separation, energy storage and conversion. At the last, combination with the research status of porous carbons, the review points out the challenges for porous carbons, and also prospects the application of porous carbons.
Yan Tingting , Xing Guolong , Ben Teng . One-step Strategy to Synthesize Porous Carbons by Carbonized Porous Organic Materials and Their Applications[J]. Acta Chimica Sinica, 2018 , 76(5) : 366 -376 . DOI: 10.6023/A18020050
[1] Liu, T. Y.; Zhang, F.; Song, Y.; Li, Y. J. Mater. Chem. A 2017, 5, 17705.
[2] Xia, Y. D.; Yang, Z. X.; Zhu, Y. Q. J. Mater. Chem. A 2013, 1, 9365.
[3] Kyotani, T. Carbon 2000, 38, 269.
[4] Yang, Y. F.; Jin, S.; Zhang, Z.; Du, Z. Z.; Liu, H. R.; Yang, J.; Xu, H. X.; Ji, H. X. ACS Appl. Mater. Interfaces 2017, 9, 14180.
[5] Yang, K.; Jiang, P.; Chen, J. T.; Chen, Q. W. ACS Appl. Mater. Interfaces 2017, 9, 32106.
[6] Dutta, S.; Bhaumik, A.; Wu, K. C. W. Energy Environ. Sci. 2014, 7, 3574.
[7] Jiang, M.; Zhang, J. L.; Xing, L. B.; Zhou, J.; Cui, H. Y.; Si, W. J.; Zhuo, S. P. Chin. J. Chem. 2016, 34, 1093.
[8] Hong, S. M.; Choi, S. W.; Kim, S. H.; Lee, K. B. Carbon 2016, 99, 354.
[9] Liu, B.; Shioyama, H.; Akita, T.; Xu, Q. J. Am. Chem. Soc. 2008, 130, 5390.
[10] Zhang, H.; Li, G. L.; Zhang, K. G.; Liao, C. Y. Acta Chim. Sinica 2017, 75, 841. (张贺, 李国良, 张可刚, 廖春阳, 化学学报, 2017, 75, 841.)
[11] Huang, G.; Chen, Y. Z.; Jiang, H. L. Acta Chim. Sinica 2016, 74, 113. (黄刚, 陈玉贞, 江海龙, 化学学报, 2016, 74, 113.)
[12] Pei, X. K.; Chen, Y. F.; Li, S. Q.; Zhang, S. H.; Feng, X.; Zhou, J. W.; Wang, B. Chin. J. Chem. 2016, 34, 157.
[13] Lu, S. L.; Jin, Y. H.; Gu, H. W.; Zhang, W. Sci. China. Chem. 2017, 60, 999.
[14] Sun, J. K.; Xu, Q. Energy Environ. Sci. 2014, 7, 2071.
[15] Wood, C. D.; Tan, B. E.; Trewin, A.; Niu, H. J.; Bradshaw, D.; Rosseinsky, M. J.; Khimyak, Y. Z.; Campbell, N. L.; Kirk, R.; Stöckel, E.; Cooper, A. I. Chem. Mater. 2007, 19, 2034.
[16] Wood, C. D.; Tan, B.; Trewin, A.; Su, F.; Rosseinsky, M. J.; Bradshaw, D.; Sun, Y.; Zhou, L.; Cooper, A. I. Adv. Mater. 2008, 20, 1916.
[17] McKeown, N. B.; Budd, P. M. Chem. Soc. Rev. 2006, 35, 675.
[18] McKeown, N. B.; Budd, P. M.; Msayib, K. J.; Ghanem, B. S.; Kingston, H. J.; Tattershall, C. E.; Makhseed, S.; Reynolds, K. J.; Fritsch, D. Chem. Eur. J. 2005, 11, 2610.
[19] Côté, A. P.; Benin, A. I.; Ockwing, N. W.; O'Keeffe, M.; Matzger, A. J.; Yaghi, O. M. Science 2005, 310, 1166.
[20] Uribe-Romo, F. J.; Hunt, J. R.; Furukawa, H.; Klock, C.; O'Keeffe, M.; Yaghi, O. M. J. Am. Chem. Soc. 2009, 131, 4570.
[21] Jiang, J. X.; Su, F.; Trewin, A.; Wood, C. D.; Campbell, N. L.; Niu, H.; Dickinson, C.; Ganin, A. Y.; Rosseinsky, M. J.; Khimyak, Y. Z.; Cooper, A. I. Angew. Chem. Int. Ed. 2007, 46, 8574.
[22] Jiang, J. X.; Su, F.; Trewin, A.; Wood, C. D.; Niu, H.; Jones, J. T. A.; Khimyak, Y. Z.; Cooper, A. I. J. Am. Chem. Soc. 2008, 130, 8875.
[23] Xu, J. W.; Zhang, C.; Wang, X. C.; Jiang, J. X.; Wang, F. Acta Chim. Sinica 2017, 75, 473. (徐佳伟, 张崇, 王永昶, 蒋加兴, 汪锋, 化学学报, 2017, 75, 473.)
[24] Kuhn, P.; Thomas, A.; Antonietti, M. Macromolecules 2009, 42, 319.
[25] Kuhn, P.; Antonietti, M.; Thomas, A. Angew. Chem. Int. Ed. 2008, 47, 3450.
[26] Ben, T.; Pei, C. Y.; Zhang, D. L.; Xu, J.; Deng, F.; Jing, X. F.; Qiu, S. L. Energy Environ. Sci. 2011, 4, 3991.
[27] Ben, T.; Ren, H.; Ma, S.; Cao, D.; Lan, J.; Jing, X.; Wang, W.; Xu, J.; Deng, F. Angew. Chem. Int. Ed. 2009, 48, 9457.
[28] Yan, Z. J.; Yuan, Y.; Liu, J.; Li, Q.; Nguyen, N. T.; Zhang, D. M.; Tian, Y. Y.; Zhu, G. S. Acta Chim. Sinica 2016, 74, 67. (闫卓君, 元野, 刘佳, 李勤, 阮南中, 张大明, 田宇阳, 朱广山, 化学学报, 2016, 74, 67.)
[29] Allcock, H. R.; Siegel, L. A. J. Am. Chem. Soc. 1964, 86, 5140.
[30] Sozzani, P.; Comotti, A.; Simonutti, R.; Meersmann, T.; Logan, J. W.; Pines, A. Angew. Chem. Int. Ed. 2000, 112, 2807.
[31] Mastalerz, M.; Oppel, I. M. Angew. Chem. Int. Ed. 2012, 51, 5252.
[32] Tozawa1, T.; Jones, J. T. A.; Swamy, S. I.; Jiang, S.; Adams, D. J.; Shakespeare, S.; Clowes, R.; Bradshaw, D.; Hasell, T.; Chong, S. Y.; Tang, C.; Thompson, S.; Parker, J.; Trewin, A.; Bacsa, J.; Slawin, A. M. Z.; Steiner, A.; Cooper, A. I. Nature Mater. 2009, 8, 973.
[33] Chen, L. J.; Reiss, P. S.; Chong, S. Y.; Holden, D.; Jelfs, K. E.; Hasell, T.; Little, M. A.; Kewley, A.; Briggs, M. E.; Stephenson, A.; Thomas, K. M.; Armstrong, J. A.; Bell, J.; Busto, J.; Noel, R.; Liu, J.; Strachan, D. M.; Thallapally, P. K.; Cooper, A. I. Nature Mater. 2014, 13, 954.
[34] Giri, N.; Del Pópolo, M. G.; Melaugh, G.; Greenaway, R.; Rätzke, K.; Koschine, T.; Pison, L.; Costa Gomes, M. F.; Cooper, A. I.; James, S. L. Nature 2015, 527, 216.
[35] Ben, T.; Li, Y. Q.; Zhu, L. K.; Zhang, D. L.; Cao, D. P.; Xiang, Z. H.; Yao, X. D.; Qiu, S. L. Energy Environ. Sci. 2012, 5, 8370.
[36] Li, Y. Q.; Ben, T.; Qiu, S. L. Acta Chim. Sinica 2015, 73, 605. (李艳强, 贲腾, 裘式伦, 化学学报, 2015, 73, 605.)
[37] Zhang, Y. M.; Li, B. Y.; Williams, K.; Gao, W. Y.; Ma, S. Q. Chem. Commun. 2013, 49, 10269.
[38] Pachfule, P.; Dhavale, V. M.; Kandambeth, S.; Kurungot, S.; Banerjee, R. Chem. Eur. J. 2013, 19, 974.
[39] Li, Y. Q.; Ben, T.; Zhang, B. Y.; Fu, Y.; Qiu, S. L. Sci. Rep. 2013, 3, 2420.
[40] Li, Y. Q.; Roy, S.; Ben, T.; Xu, S. X.; Qiu, S. L. Phys. Chem. Chem. Phys. 2014, 16, 12909.
[41] Dong, Y.; Das, S.; Zhu, L. K.; Ben, T.; Qiu, S. L. J. Mater. Chem. A 2016, 4, 18822.
[42] Li, Y. Q. Ph.D. Dissertation, Jilin University, Changchun, 2015 (in Chinese). (李艳强, 博士论文, 吉林大学, 长春, 2015.)
[43] Zhao, W. X.; Han, S.; Zhuang, X. D.; Zhang, F.; Mai, Y. Y.; Feng, X. L. J. Mater. Chem. A 2015, 3, 23352.
[44] Ashourirad, B.; Sekizkardes, A. K.; Altarawneh, S.; El-Kaderi, H. M. Chem. Mater. 2015, 27, 1349.
[45] Yang, X.; Yu, M.; Zhao, Y.; Zhang, C.; Wang, X. Y.; Jiang, J. X. J. Mater. Chem. A 2014, 2, 15139.
[46] Kou, J. H.; Sun, L. B. J. Mater. Chem. A 2016, 4, 17299.
[47] Xu, Y. J.; Wu, S. P.; Ren, S. J.; Ji, J. Y.; Yu, Y.; Shen, J. J. RSC Adv. 2017, 7, 32496.
[48] Gu, S.; He, J. Q.; Zhu, Y. L.; Wang, Z. Q.; Chen, D. Y.; Yu, G. P.; Pan, C. Y.; Guan, J. G.; Tao, K. ACS Appl. Mater. Interfaces 2016, 8, 18383.
[49] Alabadi, A.; Abbood, H. A.; Li, Q. Y.; Jing, N.; Tan, B. E. Sci. Rep. 2016, 6, 38614.
[50] Huang, Y. B.; Pachfule, P.; Sun, J. K.; Xu, Q. J. Mater. Chem. A 2016, 4, 4273.
[51] Puthiaraj, P.; Ahn, W. S. J. Energ. Chem. 2017, 26, 965.
[52] Lee, Y. J.; Talapaneni, S. N.; Coskun, A. ACS Appl. Mater. Interfaces 2017, 9, 30679.
[53] Tian, Z. H.; Huang, J. J.; Zhang, X.; Shao, G. L.; He, Q. Y.; Cao, S. K.; Yuan, S. G. Microporous Mesoporous Mater. 2018, 257, 19.
[54] Lee, J. S. M.; Briggs, M. E.; Hasell, T.; Cooper, A. I. Adv. Mater. 2016, 28, 9804.
[55] Wang, X. Y.; Mu, P.; Zhang, C.; Chen, Y.; Zeng, J. H.; Wang, F.; Jiang, J. X. ACS Appl. Mater. Interfaces 2017, 9, 20779.
[56] Feng, X. L.; Liang, Y. Y.; Zhi, L. J.; Thomas, A.; Wu, D. Q.; Lieberwirth, I.; Kolb, U.; Müllen, K. Adv. Funct. Mater. 2009, 19, 2125.
[57] Liang, Y. Y.; Feng, X. L.; Zhi, L. J.; Kolb, U.; Müllen, K. Chem. Commun. 2009, 809.
[58] Hao, L.; Luo, B.; Li, X. L.; Jin, M. H.; Fang, Y.; Tang, Z. H.; Jia, Y. Y.; Liang, M. H.; Thomas, A.; Yang, J. H.; Zhi, L. J. Energy Environ. Sci. 2012, 5, 9747.
[59] Liu, X. H.; Zhou, L.; Zhao, Y. Q.; Bian, L.; Feng, X. T.; Pu, Q. S. ACS Appl. Mater. Interfaces 2013, 5, 10280.
[60] Kim, G. Y.; Yang, J.; Nakashima, N.; Shiraki, T. Chem. Eur. J. 2017, 23, 17504.
[61] Zha, W. L.; Tu, W. L.; Li, Y.; Gao, H. Y.; Yu, J. G.; Zhao, Y. N.; Li, G. D. Electrochim. Acta 2016, 219, 143.
[62] Xiang, Z. H.; Cao, D. P.; Huang, L.; Shui, J. L.; Wang, M.; Dai, L. M. Adv. Mater. 2014, 26, 3315.
[63] Fan, X. H.; Kong, F. T.; Kong, A. G.; Chen, A. L.; Zhou, Z. Q.; Shan, Y. K. ACS Appl. Mater. Interfaces 2017, 9, 32840.
[64] Liao, Y. Z.; Cheng, Z. H.; Zuo, W. W.; Thomas, A.; Faul, C. F. J. ACS Appl. Mater. Interfaces 2017, 9, 38390.
[65] Liao, Y. Z.; Weber, J.; Mills, B. M.; Ren, Z. H.; Faul, C. F. J. Macromolecules 2016, 49, 6322.
[66] Wang, H. G.; Cheng, Z. H.; Liao, Y. Z.; Li, J. H.; Weber, J.; Thomas, A.; Faul, C. F. J. Chem. Mater. 2017, 29, 4885.
/
〈 |
|
〉 |