Molecular Dynamics Simulation of Monolayer Confined Ice-Water Phase Equilibrium
Received date: 2018-04-03
Online published: 2018-05-17
Supported by
Project supported by the National Natural Science Foundation of China (No. 11504110).
Confined water became a recent hot topic in water science due to its extremely abundant structural phase behavior. However, there exist few studies focused on the coexistence of two or more confined water phases and their related properties. We present a methodology for studying the coexistences of two confined phases of water, based on a series equilibrium molecular-dynamics (MD) simulations using isobaric-isoenthalpic ensembles to iteratively predict the melting temperatures of the low dimensional confined crystal phase of water. The methodology is applied to the coexistence of the monolayer ice and water (described with a simple water model, i.e. SPC/E model) confined in the 0.65 nm size pore, yielding a direct determination of the melting point and extensive atomic-scale characterization for the mono-molecular layer containing the confined ice-water coexistence line. A finite value of lateral pressure (5000 bar) is adopted in the simulation, to mimic the high-pressure environment of the water molecules confined in the bi-graphene pocket in a recent experiment by Algara-Siller et al.[Nature, 519, 443 (2015)]. The rough structural type and the capillary fluctuation of the line, the microscopic mechanism of the solid-liquid structural transition along the line, as well as the transport of the point defect in the solid side of the coexistence line are identified directly from the MD trajectories. Various profiles of different thermodynamic properties across the coexistence line illustrate the unique features for the in-plane coexistence of the monolayer confined ice-water system, e.g., the unexpected large width of the crystal-melt transition region, and the compression state along the solid-liquid phase coexistence line. The methodology presented in the current study can be easily applied to the coexistence of multilayer confined ice and water phases, as well as the many other types of water models beyond the SPC/E used in current work. The achievement of the low dimensional confined ice-water phase coexistence could potentially facilitate the fundamental advancements in thermodynamics and kinetic theories of the low dimensional water science.
Du Han , Liang Hongtao , Yang Yang . Molecular Dynamics Simulation of Monolayer Confined Ice-Water Phase Equilibrium[J]. Acta Chimica Sinica, 2018 , 76(6) : 483 -490 . DOI: 10.6023/A18040128
[1] Koga, K.; Zeng, X. C.; Tanaka, H. Phys. Rev. Lett. 1997, 79, 5262.
[2] Bai, J.; Zeng, X. C. Proc. Nat. Acad. Sci. 2012, 109, 21240.
[3] Ferguson, A. L.; Giovambattista, N.; Rossky, P. J.; Panagiotopoulos, A. Z.; Debenedetti, P. G. J. Phys. Chem. 2012, 137, 144501.
[4] Kumar, P.; Buldyrev, S. V.; Starr, F. W.; Giovambat-tista, N.; Stanley, H. E. Phys. Rev. E 2005, 72, 051503.
[5] Qiu, H.; Guo, W. Phys. Rev. Lett. 2013, 110, 195701.
[6] Bai, J. C.; Angell, A.; Zeng, X. C. Proc. Nat. Acad. Sci. 2010, 107, 5718.
[7] Johnston, J. C.; Kastelowitz, N.; Molinero, V. J. Phys. Chem. 2010, 133, 283101.
[8] Algara-Siller, G.; Lehtinen, O.; Wang, F.; Nair, R.; Kaiser, U.; Wu, H.; Geim, A.; Grigorieva, I. Nature 2015, 519, 443.
[9] Li, H. L.; Jia, Y. X.; Hu, Y. D. Acta Phys.-Chim. Sin. 2012, 28, 573. (李海兰, 贾玉香, 胡仰栋, 物理化学学报, 2012, 28, 573.)
[10] Joshi, R. K.; Carbone, P.; Wang, F. C.; Kravets, V. G.; Su, Y.; Grigorieva, I. V.; Wu, H. A.; Geim, A. K.; Nair, R. R. Science 2014, 343, 752.
[11] Zhao, M. Y.; Yang, X. P.; Yang, X. N. Acta Phys.-Chim. Sin. 2015, 31, 1489. (赵梦尧, 杨雪平, 杨晓宁, 物理化学学报, 2015, 31, 1489.)
[12] Sun, Y. R.; Yu, F.; Ma, J. Acta Phys.-Chim. Sin. 2017, 33, 2173. (孙怡然, 于飞, 马杰, 物理化学学报, 2017, 33, 2173.)
[13] Bai, J.; Angell, C. A.; Zeng, X. C. Proc. Nat. Acad. Sci. 2010, 107, 5718.
[14] Johnston, J. C.; Kastelowitz, N.; Molinero, V. J. Phys. Chem. 2010, 133, 283101.
[15] Chen, J.; Schusteritsch, G.; Pickard, C. J.; Salzmann, C. G.; Michaelides, A. Phys. Rev. Lett. 2016, 116, 025501.
[16] Koga, K.; Tanaka, H. J. Phys. Chem. 2005, 122, 104711.
[17] Zangi, R.; Mark, A. E. Phys. Rev. Lett. 2003, 91, 025502.
[18] Zhao, W. H.; Wang, L.; Bai, J.; Yuan, L. F.; Yang, J.; Zeng, X. C. Acc. Chem. Res. 2014, 47, 2505.
[19] Frolov, T.; Mishin, Y. J. Phys. Chem. 2015, 143, 044706.
[20] Berendsen, H. J. C.; Grigerat, J. R.; Straatsma, T. P. Chem. Soc. 1987, 91, 24.
[21] Giovambattista, N.; Rossky, P. J.; Debenedetti, P. G. Phys. Rev. Lett. 2009, 102, 050603.
[22] Xia, X. Berkowitz, M. L. Phys. Rev. Lett. 1995, 74, 3193.
[23] Kimmel, G. A.; Matthiesen, J.; Baer, M.; Mundy, C. J.; Petrik, N. G.; Smith, R. S.; Dohnalek, Z.; Kay, B. D. J. Am. Chem. Soc. 2009, 131, 12838.
[24] Yang, J.; Meng, S.; Xu, L.; Wang, E. Phys. Rev. Lett. 2004, 92, 146102.
[25] Magda, J. J.; Tirell, M.; Davis, H. T. J. Chem. Phys. 1986, 84, 2901.
[26] Werder, T.; Walther, J. H.; Jaffe, R. L.; Halicioglu, T.; Koumoutsakos, P. J. Phys. Chem. B 2003, 107, 1345.
[27] Hockney, R. W.; Eastwood, J. W. Computer Simulation Using Particles, CRC Press, U. S., 1988, 55.
[28] Yeh, I. C.; Berkowitz, M. L. J. Chem. Phys. 1999, 111, 3155.
[29] Plimpton, S. J. Comput. Phys. 1995, 117, 1.
[30] Ryckaert, J.-P.; Ciccotti, G.; Berendsen, H. J. J. Comput. Phys. 1997, 23, 327.
[31] Frenkel, D.; Smit, B. Understanding Molecular Simulation, 2nd ed., Academic Press, New York, 2002.
[32] Broughton, J. Q.; Gilmer, G. H. J. Chem. Phys. 1986, 84, 5749.
[33] Broughton, J. Q.; Gilmer, G. H. J. Chem. Phys. 1986, 84, 5759.
[34] Davidchack, R. L.; Laird, B. B. Phys. Rev. Lett. 2000, 85, 4751.
[35] Hoyt, J. J.; Asta, M.; Haxhimali, T.; Karma, A.; Napolitano, R. E.; Trivedi, R.; Laird, B. B.; Morris, J. R. MRS Bull. 2004, 29, 935.
[36] Frolov, T.; Mishin, Y. Model. Simul. Mater. Sci. Eng. 2010, 18, 074003.
[37] Becker, C. A.; Hoyt, J. J.; Buta, D.; Asta, M. Phys. Rev. E 2007, 75, 061610.
[38] Beckera, C. A.; Asta, M.; Hoyt, J. J.; Foiles, S. M. J. Chem. Phys. 2006, 124, 164708.
[39] Benet, J.; MacDowell, L. G.; Sanz, E. J. Chem. Phys. 2014, 141, 034701.
[40] Benet, J.; MacDowell, L. G.; Sanz, E. Phys. Chem. Chem. Phys. 2014, 16, 22159.
[41] Andersen, H. C. J. Chem. Phys. 1980, 72, 2384.
[42] Puri, P.; Yang, V. J. Phys. Chem. C 2007, 111, 11776.
[43] Liang, H. T.; Laird, B. B.; Asta, M.; Yang, Y. Acta Mater. 2018, 143, 329.
[44] Davidchack, R. L.; Laird, B. B. J. Chem. Phys. 1998, 108, 9452.
[45] Buta, D.; Asta, M.; Hoyt, J. J. Phys. Rev. E 2008, 78, 031605.
[46] Morris, J. R. Phys. Rev. B 2002, 66, 144104.
[47] Yang, Y.; Olmsted, D.; Asta, M.; Laird, B. B. Acta Mater. 2012, 60, 4960.
/
〈 |
|
〉 |